

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 1 | 65

BHI260AB-BHA260AB Programmer’s Manual
Document revision 1.5
Document release date May 28th, 2020
Document number BST-BHI260AB-AN002-03
Technical reference code(s) 0 273 141 367 0 273 141 392
Notes Data and descriptions in this document are subject to change without

notice. Product photos and pictures are for illustration purposes only and
may differ from the real product appearance.

BHI260AB BHA260AB
Ultra-low power high performance Smart Sensor Hub
with integrated sensors

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 2 | 65

Table of Contents
List of Figures ... 5

List of Tables ... 6

General description .. 7

1 Prerequisites and installation ... 8

1.1 Compiler toolchains.. 8

1.1.1 Obtaining and installing the Synopsys MetaWare C compiler .. 8

1.1.2 Obtaining and installing the GNU C compiler for BHI260AB/BHA260AB ... 9

1.2 Software Development Kit for BHI260AB/BHA260AB ... 11

1.2.1 Linux .. 11

1.2.2 Windows .. 11

2 SDK structure and features ... 12

2.1 SDK and firmware structure ... 12

2.1.1 Overview of SDK structure .. 12

2.1.2 Overview of firmware structure .. 12

2.1.3 Available memory resources for custom Code.. 13

2.2 Firmware configuration (using board configuration file) ... 14

2.2.1 Global configuration ... 14

2.2.2 Physical drivers ... 15

2.2.3 Virtual drivers ... 16

2.3 Build system and build targets ... 16

2.3.1 Compiling firmware .. 16

2.3.2 Configuring the firmware build (using the main CMake file) .. 17

2.3.3 Selecting the toolchain .. 17

3 BHy2 driver architecture ... 19

3.1 General flow of data ... 19

4 Software development for BHI260AB/BHA260AB using the software framework .. 21

4.1 Sensor driver overview .. 21

4.1.1 Sensor driver types .. 21

4.1.2 Predefined sensors .. 21

4.1.3 Sensor priority level ... 23

4.1.4 Sensor trigger chaining .. 23

4.1.5 Driver hang detection .. 26

4.2 Drivers directory structure .. 26

4.3 Driver CMakeLists.txt file ... 26

4.4 Checking for existing Driver IDs ... 27

4.5 Writing driver code ... 27

4.5.1 Recommended include files .. 27

4.5.2 Sensor communication support ... 27

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 3 | 65

4.5.3 Sensor descriptor structure ... 29

4.5.4 Sensor driver functions .. 36

4.5.5 Using custom sensor IDs to send data to the host .. 40

4.5.6 Connection between Driver ID and Sensor ID .. 41

4.5.7 Virtual sensor host interface .. 41

4.5.8 Handling special cases .. 41

4.6 Sensor data injection drivers .. 42

4.6.1 Initialization .. 42

4.6.2 Set sample rate ... 42

4.6.3 Get sample data .. 42

4.6.4 Other required sensor functions .. 42

4.6.5 Driver config file and custom board file ... 43

4.7 Driver coding requirements .. 43

4.8 Example virtual sensor drivers ... 46

4.8.1 Continuous virtual sensor .. 46

4.8.2 On-change virtual sensor .. 48

4.8.3 One-shot virtual sensor ... 49

4.9 Programming custom code extensions .. 50

4.9.1 Overview .. 50

4.9.2 Hook implementation ... 52

4.9.3 Hook priority level .. 53

4.9.4 Stopping hook execution ... 53

4.9.5 Accessing data from hooks ... 53

4.9.6 Usage .. 53

4.10 Programming custom user mode libraries ... 54

4.11 Using custom parameters .. 55

4.11.1 Initialization .. 55

4.11.2 Parameter read handler ... 56

4.11.3 Parameter write handler .. 56

4.12 Using general-purpose host registers .. 57

4.13 Watchdog configuration ... 58

4.14 Firmware debugging .. 58

4.14.1 Debug message .. 58

4.14.2 Post mortem data .. 59

4.14.3 Current system time .. 60

4.14.4 Monitoring stack usage .. 61

5 References .. 62

6 Legal disclaimer ... 63

6.1 Engineering samples.. 63

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 4 | 65

6.2 Product use .. 63

6.3 Application examples and hints ... 63

7 Trademark notice ... 64

8 Document history and modifications ... 64

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 5 | 65

List of Figures
Figure 1: Structure of the BHy2 Software Framework .. 7
Figure 2: ARC GNU Toolchain Download... 10
Figure 3: Available Memory Resources for Custom Code Development (White) and Reserved Memory (Blue) 14
Figure 4: Example Physical Driver Configuration ... 16
Figure 5: Example Virtual Driver Configuration .. 16
Figure 6: BHy2 Driver Architecture ... 19
Figure 7. Example Trigger List .. 24
Figure 8: Example of Complex Sensor Dependency .. 25
Figure 9: Custom Driver CMakeLists.txt Example .. 27
Figure 10: Driver Include Files Example ... 27
Figure 11: Physical Sensor Data Handling ... 39
Figure 12: Virtual Sensor Data Handling .. 40
Figure 13: Sensor Data Injection Function APIs ... 42
Figure 14: Sensor Data Injection Structure for Initialization .. 42
Figure 15: Continuous Virtual Sensor – Header ... 46
Figure 16: Continuous Virtual Sensor – Handle_Sensor_Data .. 47
Figure 17: Continuous Virtual Sensor – Virtual Sensor Descriptor ... 48
Figure 18: On-Change Virtual Sensor ... 49
Figure 19: One-Shot Virtual Sensor .. 50
Figure 20: Hooks Called During Initialization .. 52
Figure 21: Definition of Hook Function .. 52
Figure 22: Hook Priorities.. 53
Figure 23: Hook Example 1 .. 53
Figure 24: Hook Example 2 .. 54
Figure 25: CMakeLists.txt Example .. 54
Figure 26: Parameter Page Read and Write Callback Registration ... 56
Figure 27: Parameter Read Callback .. 56
Figure 28: Parameter Write Callback .. 57
Figure 29. Setting the Watchdog Limit .. 58
Figure 30 : Backtrace Utility .. 60
Figure 31 : Stack Usage Report .. 61

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 6 | 65

List of Tables
Table 1: SDK Directory Structure .. 12
Table 2: Firmware Components .. 13
Table 3: Board Configuration – Global Values ... 14
Table 4: Board Configuration – Physical Driver values .. 15
Table 5: Board Configuration – Virtual Driver values .. 16
Table 6: RAM Version Setting in SDK Compilation Result ... 16
Table 7: Main CMake File Parameters ... 17
Table 8: Driver Directory Content ... 26
Table 9: SensorDescriptor – SensorInfo Structure ... 30
Table 10: SensorDescriptor – SensorType Structure ... 31
Table 11: SensorDescriptor – Physical Device Structure ... 32
Table 12: I2C Device (I2C_Device_t) ... 32
Table 13: SPI Master Device (SPIM_Device_t) .. 32
Table 14: SensorDescriptor – Physical Sensor Function Pointer Fields .. 33
Table 15: SensorDescriptor – Physical Sensor Data Fields ... 33
Table 16: Trigger Source Timer .. 35
Table 17: SensorDescriptor – Virtual Sensor Function Pointer Fields ... 35
Table 18: SensorDescriptor – Virtual Sensor Data Fields .. 35
Table 19: SensorPowerMode Definition ... 36
Table 20: set_power_mode Driver Requirements .. 37
Table 21: Summary of Sensor Data Handling Functions .. 38
Table 22: Summary Special Sensor cases ... 41
Table 23: Supported Hook Types ... 50
Table 24: Parameters .. 55
Table 25: Available GPIO Registers for Communication with Host .. 57

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 7 | 65

General description
This document describes the process of developing firmware for the BHI260AB and BHA260AB devices (hereafter referred
to as the “BHy2”).

The BHy2 is a family of ultra-low-power smart hubs consisting of Bosch Sensortec’s new programmable 32-bit microcontroller
(Fuser2), state-of-the-art motion sensors, and a powerful software framework with pre-installed sensor fusion and other
sensor processing software in a small LGA package.

The firmware to run on the Fuser2 microcontroller is divided into a ROM image built into the BHy2 and RAM/Flash firmware
images which can be used to customize firmware and provide patches for the ROM image.

The ROM firmware includes a bootloader, standard C, math, and security libraries, the host interface and support for basic
host commands, and low -level hardware drivers.

When booting, the BHy2 bootloader loads a RAM/Flash image that defines the customization of the BHy2, and may contain
additional algorithms defined by the user or Bosch Sensortec. It is possible to use the BHy2 device even without developing
new firmware, since binary firmware files are provided on the Bosch Sensortec website, which provide broad functionality
with both internal and external sensors, e.g. implementing a versatile ready-to-go Android™ sensor hub.

The purpose of this document is to describe how additional algorithms can be compiled into the firmware and how the
firmware can be tailored to the application needs.

Figure 1 describes the internal architecture of the firmware stack.

Figure 1: Structure of the BHy2 Software Framework

In the default configuration, the firmware makes use of the event-driven software framework, and the customization can be
done by adding or removing drivers to/from the event-driven system, or just configuring the drivers. This provides a high
degree of flexibility, and most use cases can be handled with this level of configuration.

In addition to this document, Bosch Sensortec provides several documents which contain information on applications that
are either directly or indirectly linked to firmware programming:

• BHI260AB/BHA260AB Datasheet: Provides technical details on the BHy2 devices.

• BHI260AB-BHA260AB SDK Quick Start Guide: Provides a simple and fast way to set up a firmware programming
environment and get started with programming.

• BHI260AB-BHA260AB Evaluation Setup Guide: Contains information on how to evaluate BHy2 hardware using
dedicated software on a host computer. This includes host channel communication with the BHy2 devices.

• BHI260AB-BHA260AB In-Circuit Debugging Guide: Provides methods for in-circuit debugging using the JTAG
protocol in combination with a debugging environment.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 8 | 65

1 Prerequisites and installation
The Software Development Kit (SDK) is designed for use on either a 64 bit Windows system or a 64-bit Linux system. Most
testing has been done with Red Hat Enterprise Linux (7.4 or higher) and Ubuntu (16.04 LTS), however, no major issues are
expected with other Windows or Linux distributions.

The following software packages are required for firmware development:

• BHy2 SDK release package from Bosch Sensortec

• Either of the ARC®1 compiler toolchains

o Synopsys MetaWare Compiler and Debugger Suite, revision 2018.03

o ARC® GCC, revision 2018.09

In general, the MetaWare toolchain is recommended due to increased testing and improved code size and
execution speed.

Linux only: (utilities already included in binary format for Windows system)

• CMake revision 3.5 or higher

• Native C++ compiler and standard C library of the development system

• Ninja revision 1.3.4 or higher (optional)

Note that the toolchain versions provided in this document are those the SDK has been tested with. Newer versions of the
toolchains can be installed but are not guaranteed to work as intended.

1.1 Compiler toolchains

The developer has a choice to use either the Synopsys MetaWare toolchain or the GNU GCC toolchain. MetaWare has
shown to result in high code density and execution performance, so in general, it is the recommended choice. The GCC
toolchain has the advantage of free availability without license costs incurred.

1.1.1 Obtaining and installing the Synopsys MetaWare C compiler

The latest version of the MetaWare Development Toolkit can be downloaded from the Synopsys website, see Reference 3,
however, to obtain an older version of MetaWare, Synopsys must be contacted directly. To do so, please open a support
case with Synopsys.

A valid license shall be obtained from Synopsys prior to installation.

1.1.1.1 Linux

The Synopsys MetaWare toolchain requires a 64-bit Linux operating system with 6 GB of free disk space to install.

Installation procedure:

1. Ensure the installer is executable.

chmod +w ./mw_devkit_arc_M_2018_03_linux_x64_install.bin

2. Run the installer.

./mw_devkit_arc_M_2018_03_linux_x64_install.bin -i console

3. Press ENTER to continue.

4. Read the EULA.

5. Accept the EULA.

1 ARC® is a registered trademark of Synopsys.Inc.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 9 | 65

6. Read the notice about multiple installations.

7. Select the installation path (ENTER for default).

It is recommended to install it to the location /opt/synopsys/metaware/<version>/ if this is available to all users. For
single-user installs, ~/metaware/<version>/ can be selected instead.

8. Verify installation options.

9. Perform the installation.

10. Read the licensing note and continue. Provide the license file or link to license server when requested.

The installation is now complete.

Setting environment variables:

By default, the MetaWare installer sets the following variables by modifying the user start-up script:

METAWARE_ROOT: <install_path>/MetaWare
NSIM_HOME: <install_path>/nSIM/nSIM
LD_LIBRARY_PATH: <install_path>/Metaware/arc/bin
PATH: <install_path>/arc/bin;<install_path>/MetaWare/ide

These variables are set by modifying the user start-up script. They can be modified as needed. For a multi-user install,
special care needs to be taken to ensure that all users have the appropriate environment variables set.

There are three primary methods for installing and activating the MetaWare license:

1. The license file can be installed to <install_path>/license/arc.lic.

2. The SNPSLMD_LICENSE_FILE environment variable can be set to point to the local license file.

3. The SNPSLMD_LICENSE_FILE environment variable can be setup to point to the license server by setting it to
<port>@<server>.

1.1.1.2 Windows

Installation procedure:

1. Run the installer by double-clicking the .exe file.

2. Read and accept the license agreement.

3. Select the install directory.

4. Verify installation options.

5. Perform the installation.

6. Read the licensing note and continue. Provide the license file or the link to the license server when requested.

7. Make sure that the environment variable SNPSLMD_LICENSE_FILE points to your MetaWare license file.

The installation is now complete.

1.1.2 Obtaining and installing the GNU C compiler for BHI260AB/BHA260AB

The latest version (as well as older versions) of the GNU Toolchain can be downloaded from the website given in
Reference 4. A specific download package can be selected by using the drop down Assets in a specific release section,
see Figure 2.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 10 | 65

Figure 2: ARC GNU Toolchain Download

1.1.2.1 Linux

The GNU toolchain requires a 64-bit Linux operating system. . The package with support for elf32 little-endian hosts is
required. For the 2018.09 release, the correct version to install is the
arc_gnu_2018.09_prebuilt_elf32_le_linux_install.tar.gz package.

Note:

The arc_gnu_2018.09_ide_linux_install.tar.gz file can be used instead if the eclipse ide is desired.

1. Extract the installation package.

tar -xvf arc_gnu_2018.09_prebuilt_elf32_le_linux_install.tar.gz

2. Move the extracted folder to the installation path. For multi-user installs /opt/arc_gnu/<version> is a good path, while
single-user installs can use ~/arc_gnu/<version>.

mkdir -p ~/arc_gnu/

mv arc_gnu_2018.09_prebuilt_elf32_le_linux_install ~/arc_gnu/2018.09

3. Update the PATH variable to include the <install_path>/bin/ directory. This can be done by modifying the shell start-up
script as appropriate.

1.1.2.2 Windows

The latest version of the GNU Toolchain can be downloaded from the website given in Reference 4. For the 2018.09
release, the correct version to install is the arc_gnu_2018.09_ide_win_install.exe package (see Figure 2).

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 11 | 65

Simply double-click the installer and follow the instructions in order to install the compiler toolchain.

1.2 Software Development Kit for BHI260AB/BHA260AB

1.2.1 Linux

The SDK is a shell archive that can be extracted under Linux. To install the SDK, execute the following steps:

1. Obtain the SDK shell archive for Linux.

2. Make it executable.

chmod a+x BHI260_SDK_V1.0.0_Install.sh

3. Execute the shell script.

./BHI260_SDK_V1.0.0_Install.sh

4. Read and accept the license.

5. Select the installation directory.

Now the SDK tree is extracted to the selected directory.

1.2.2 Windows

To install the SDK, execute the following steps:

1. Obtain the SDK executable file for Windows.

2. Double-click BHI260_SDK_Installer_V1.0.0.exe.

3. Read and accept the license agreement, click Next.

4. Choose the install directory.

Now the SDK tree is extracted to the selected directory.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 12 | 65

2 SDK structure and features

2.1 SDK and firmware structure

2.1.1 Overview of SDK structure

The SDK package contains all the necessary files for custom code development and linking. Typical custom code
development will utilize the drivers_custom subdirectory (see Table 1 below).

Table 1: SDK Directory Structure

SDK File/Directory Notes

apps Directory which contains source code for applications that run outside of the
sensor framework

boards Configuration files for supported development boards and sensors

cmake CMake files used to build the SDK

common Source code for initialization code and reference header files, main CMake
global configuration file

docs Information regarding application notes

drivers Source code and binary code of sensor drivers, custom drivers can be placed
in this directory

drivers_custom Driver templates for custom drivers. Custom driver code should be placed in
this directory

gdb Support files for using gdb

kernel Binaries and objects files of the firmware kernel image

libs Linkable binary image and header files for API libraries

user Entry code for user-mode firmware, source code for custom user-mode RAM
patches

utils Executable image manipulation utilities, command line interface

win64 Binaries of utilities for Windows system.

build.sh Shell script used to set up the build directory and build the firmware on Linux

build.bat Batch script used to set up build directory and build the firmware on Windows

README.txt Hints on requirements and instructions for building firmware

release Created during build process, will contain final binary firmware files and elf files

build Created during build process, will contain intermediate build artifacts, used
memory resources for different board configurations etc.

2.1.2 Overview of firmware structure

Firmware images for the BHy2 are divided into a ROM image built into the BHy2 chip and RAM/Flash firmware images which
can be used to customize firmware and provide patches for the ROM firmware. The ROM firmware includes the bootloader,
SHA256 and ECDSA security libraries, the host interface and support for basic host commands, the BSX sensor fusion library
and low-level hardware drivers.

RAM/Flash firmware images are further divided into two images – a kernel image and a user image, which are described
below.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 13 | 65

2.1.2.1 Kernel Mode and User Mode RAM Images

RAM/Flash firmware images are divided into two images - kernel image and user image. The kernel image includes the
sensor framework, RTOS libraries, the sensor fusion library, support for additional host commands, and any necessary
ROM patches. The user image includes all physical and virtual drivers. Table 2 describes various firmware components
and their operating modes.

Kernel and user operating modes are used to provide privileged and restricted access to certain privileged instructions,
registers, and memory locations. Kernel mode has the highest level of privilege and allows unrestricted access to privileged
resources, while user mode has the lowest level of privilege and allows only restricted access to privileged resources. Any
attempt to access privileged resources will result in a privilege violation exception.

Table 2: Firmware Components

Component Image Operating Context Operating mode

Hooks Kernel or user payload Any Kernel

Commands Kernel payload Interrupt/Host task Kernel

Param IO Kernel payload Interrupt Kernel

Physical Drivers User payload Interrupt/Sensor Framework
task Kernel

Virtual Drivers User payload Virtual Tasks User

2.1.3 Available memory resources for custom Code

Figure 3 shows the breakdown of memory resources available for custom programing using program and data RAM. There
is a total of 256 KB available RAM. One bank of 16 KB is dedicated program RAM and one bank of 16 KB is dedicated
data RAM. The remaining 7 – 32 KB banks of RAM can be divided as needed between program and data RAM. During
initialization, the firmware determines how many banks of program and data RAM are needed and allocates and powers on
only what is needed.

In order to optimize for both size and speed, custom code should utilize available API functions. Available API functions
abstract away access to hardware and are optimized for speed.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 14 | 65

Fuser2 memory resources

Built-in firmware ROM (144 KB)

Base firmware
Data & Stack

Output FIFO and
User-Mode Data

Data RAM
Minimum 16 KB

Maximum 240 KB

Kernel-Mode
RAM firmware

User-Mode
RAM firmware

Program RAM
Minimum 16 KB

Maximum 240 KB

Figure 3: Available Memory Resources for Custom Code Development (White) and Reserved Memory (Blue)

2.2 Firmware configuration (using board configuration file)

Board configuration files are used to specify configuration data for different firmware builds. A board configuration file includes
a global configuration section, a physical driver configuration section and a virtual driver configuration section. Comments
begin with a hash mark (#) and go to the end of the current line.

Board configuration files can be found in the directory boards in the SDK root. The SDK contains multiple board configuration
files. The main CMake file, common/config.7189_di03_rtos_bhi260.cmake, controls which board configurations are
compiled during the firmware build process (see section 2.3.2).

2.2.1 Global configuration

The global configuration section specifies a number of hardware configurations. Each line in the global configuration section
begins with the option name and is followed by the value(s) to be assigned to that option. The option name and value(s) are
listed as comma separated values.

Table 3: Board Configuration – Global Values

Option Value

stuffelf stuffelf version used to write configuration file

irq Host IRQ pin number

evcfg
12 values specifying the GPIO event configuration (events 1-11). Each value specifies
whether the respective GPIO event interrupt gets its source per configuration 1 (0) or
configuration 2 (1). The first value (event 0) is reserved and should be set to 0.

pull Up to 28 values specifying the GPIO pull configuration, off = pull is disabled, on = pull is
enabled. If no values are indicated, the default value will be off.

gpio Up to 25 values specifying the GPIO value configuration, low = active low, high = active high,
hiz = high impedance. If no values are indicated, the default value will be hiz.

sif_cfg
Sensor Interface selection, selects the protocol for SIF0 and SIF1. SIF2 is always connected
to I2C master 1.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 15 | 65

Option Value

sif_cfg: SIF0 SIF1 SIF2
 0: SPI master 0 SPI master 1 I2C master 1
 1: SPI master 0 I2C master 0 I2C master 1
 2: I2C master 0 SPI master 1 I2C master 1

hif_disable Host interface configuration. 0 = enabled, 1 = disabled

rom_name Custom ROM firmware image name

hw Target hardware name

fifo
FIFO allocation percentage, wake-up FIFO is allocated 50% plus half of this value, non-
wake-up FIFO is allocated remaining. Valid values range from -100 (100% non-wake-up) to
+100 (100% wake-up).

wordsreq Number of words required by the FIFO

turbo Run in turbo mode

rom Expected ROM version (unused)

version Custom user firmware version

build_type Firmware build type, can be set to RAM, Flash, or both

config_list BSX specification list file

config_spec BSX specification file

ram_patches
(optional) Names of ram patches (hooks) that shall be included for this board

lib
(optional) Names of libraries that shall be included for this board

2.2.2 Physical drivers

The physical driver section includes one line for each physical driver that should be included in the firmware image. The
configuration for each physical driver is specified in a comma separated list (one line per included driver) and includes the
following values. No option names are included in the physical driver configuration list.

Table 4: Board Configuration – Physical Driver values

Option Value

Driver ID Driver ID of the physical driver to be included. It must match the driver ID
indicated in the CMakeLists.txt file.

Sensor Bus Interface The value must be one of none, i2c0, i2c1, spi0, or spi1.

Sensor Bus Address If I2C, this is a 7-bit slave address (MSB = 0). If SPI, this is the GPIO pin
for chip select.

GPIO Pin GPIO IRQ pin number, specify a dash (-) if a GPIO IRQ pin does not exist

Calibration Matrix 9 floating point values indicating the calibration matrix used for the sensor

Calibration Offset 3 floating point values indicating the calibration offset for the sensor

Max rate Override the maximum rate for the physical driver

Range Set the dynamic range for the physical driver

For example, the BHA260AB Accel driver might be configured with this line in the physical driver configuration list.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 16 | 65

Figure 4: Example Physical Driver Configuration

2.2.3 Virtual drivers

The virtual driver section includes one line for each virtual driver that should be included in the firmware image. The
configuration for each virtual driver is specified in a comma separated list (one line per included driver) and includes the
following values. No option names are included in the virtual driver configuration list.

Table 5: Board Configuration – Virtual Driver values

Option Value

Driver ID Driver ID of the virtual driver to be included. It must match the driver ID
indicated in the CMakeLists.txt file.

Max rate Override the maximum rate for the virtual driver

For example, the virtual accel raw driver might be configured with this line in the virtual driver configuration list.

Figure 5: Example Virtual Driver Configuration

2.3 Build system and build targets

2.3.1 Compiling firmware

This section describes the firmware compilation process using the SDK. This compilation process is common for custom
hooks and custom driver development. Note that compilation is a multi-step process – first, the source code is compiled and
linked into $SDK/user/<board>.elf file. Second, the proper rotation matrixes and pin settings are applied using stuffelf
utility. Finally the *.elf file is converted to the binary firmware format. The final firmware image is named <board>.fw and
can be found in the $SDK/release/fw directory ($SDK/release/gccfw for GCC compilation).

2.3.1.1 Setting environment for compilation

In order to identify the version of firmware running on the device, the USER_VERSION field in the Config Data Structure is
populated during compilation. This value is readable from the User Version register during normal operation (see section 13
of BHI260AB/BHA260AB Datasheet, Reference 1 and Reference 2). The USER_VERSION field is set as shown in Table 6.

Table 6: RAM Version Setting in SDK Compilation Result

SDK checked from git RAM Version Setting

Yes Number of git commits in the current git repository (git rev-list HEAD)

No Value from $SDK/config.cmake REVISION

2.3.1.2 Firmware generation for supported boards

A simplified compilation flow is available for standard boards. The build system utilizes CMake and can generate Ninja build
files (default) or standard UNIX makefiles (if Ninja is not installed). There are build scripts (build.sh (Linux) and build.bat

45,spi0,25,2, 1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, -1.000000, 0

203, 400.000000 # accel raw depends on a virtual BSX source.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 17 | 65

(Windows)) in the $SDK directory that automates the initial build. To build standard firmware for all pre-defined boards without
custom hooks or drivers, execute the following steps.

Linux:

cd $SDK
./build.sh

Windows:
cd $SDK
build.bat

The resulting binary firmware files are located in the $SDK/build/user directory. As a final step of the build process, a
condensed version of the final artifacts is copied to the $SDK/release directory. The generated firmware images are located
in $SDK/release/fw ($SDK/release/gccfw for GCC compilation).

Individual board firmware can be built by specifiying a <board-name> as an argument of the build script, where <board-
name> is the name of a board config file minus the ‘.cfg’ extension.

Linux:

cd $SDK
./build.sh <board-name>

Windows:
cd $SDK
build.bat <board-name>

To create a new board file, copy an existing reference board file in the $SDK/boards directory to a new board file. Edit
$SDK/common/config.<$SDK_TYPE>.cmake to add the name of the board file to the BOARDS variable. Be sure to choose a
reference board file according to the sensors you need, editing it to use the correct GPIO pin and sensor drivers, and other
configuration.

2.3.2 Configuring the firmware build (using the main CMake file)

The firmware build process can be customized by modifying the main CMake file, which is located in
$SDK/common/config.<$SDK_TYPE>.cmake. Table 7 shows the main configurable parameters that need to be modified
when developing custom firmware. In the set call, each added value must be written to a new line.

Table 7: Main CMake File Parameters

Parameter Note

BOARDS Contain the names of boards for which a firmware file shall be built. The
name must match the board config file minus the ‘.cfg’ extension.

DRIVERS_NO_SOURCE
Contain drivers that are not present as source code, which shall be
included in the firmware. The name must match the driver folder and *.c
name.

ENABLED_DRIVERS
Contain drivers that are present as source code, which shall be included
in the firmware. The name must match the matching driver folder and *.c
name.

RAM_PATCHES Need to contain the names of the *.c files (located in
$SDK/user/RamPatches) that contain hooks which shall be implemented.

2.3.3 Selecting the toolchain

The firmware build process automatically searches for installed compiler toolchains (GCC and/or MetaWare). In case both
are found, MetaWare is chosen as the compiler.

If the build process shall use GCC in any cases, the build script can be called as follows:

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 18 | 65

Linux:

cd $SDK
./build.sh USE_GCC

Windows:

cd $SDK

build.bat USE_GCC

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 19 | 65

3 BHy2 driver architecture
This chapter provides information about how sensor data is handled on the BHy2 device in general. Furthermore, it explains
how additional sensors and custom algorithms working on physical or virtual data can be integrated into the sensor
framework.

In general, all functionality related to sensors and sensor data is handled by the sensor framework. This framework handles
priorities among implemented drivers and organizes the general flow of data. The sensor framework is the entry point to the
BHy2 custom software development.

The BSX sensor fusion library gets physical sensor data as input and provides calibrated, combined and raw data, which is
either used as direct output data or as a data source for different algorithms, including custom algorithms. Algorithms that
use BSX output as an input can be implemented in virtual drivers.

In general, the BSX sensor fusion library provides three output gates that are either used by algorithms or for sending sensor
data directly to FIFO: Wake-up, Non-Wake-up and custom output gates.

3.1 General flow of data

Figure 6 provides an overview of the structure and dataflow of the BHy2 device.

Figure 6: BHy2 Driver Architecture

Physical sensor data coming from internal or external sensors is accessed by one physical driver for each physical sensor.
For a predefined set of sensors (accelerometer, magnetometer and gyroscope), the BSX fusion library uses the output of the
physical driver and fuses this data. The BSX provides the processed data to virtual drivers, which are then used to compute
additional algorithms or directly transfer the data to the FIFO. The sensor framework handles the transfer of data to either
the Non-Wake-up FIFO or the Wake-up FIFO, which is accessible from the host side. For more information on the FIFO
concept, see Reference 1 and Reference 2.

The BSX fusion library can also output raw data from the physical drivers to custom output gates, which can then be
manipulated by custom algorithms. In order to access this data, a data source driver, which provides an interface to the BSX
output data via custom output gates, has to be created. This data source driver can then be used as an input for custom
algorithms implemented in virtual drivers.

Physical sensor data can also be accessed without using the BSX fusion library, by creating a pair of custom physical and
virtual drivers. The output of these virtual sensors are then sent to the FIFOs, which is handled by the sensor framework.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 20 | 65

Note that only physical sensors, which are not handled by the BSX, can be used for this concept. It is possible to attach
multiple virtual drivers to one physical driver.

A virtual sensor must report sensor data to the host using the reportSensorEvent function. This function sends the output
data to the host interface. If the sensor is explicitly enabled by the host, the output data will be inserted into the proper FIFO
(non-wakeup FIFO and/or wakeup FIFO). If the sensor framework (via the trigger list/dependency chain) determined that a
virtual sensor needs to be enabled, then the host interface will instead discard the output data.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 21 | 65

4 Software development for BHI260AB/BHA260AB using the software
framework

BHy2 functionality can be enhanced by writing custom sensor drivers that can be tied with particular hardware connected to
the BHy2 as physical sensors or based on software as virtual sensors. Only virtual sensors can output data to the FIFO for
transfer to the host, so users creating a non-standard physical sensor driver will need to also create a matching virtual sensor
driver if they intend the data to be sent to the host. This section describes all steps necessary to write custom drivers.

4.1 Sensor driver overview

The BHy2 supports several sensor driver types that can depend on each other, be triggered by various sources and executed
in different priority levels.

4.1.1 Sensor driver types

There are three basic types of sensor driver: Physical, Virtual and Timer. Note that any virtual driver can have an equivalent
physical driver.

4.1.1.1 Physical sensors

• Providers of sensor data
• Triggered by GPIO interrupts
• Can be periodically polled using a timer if no GPIO is available
• Do not output data to the host

4.1.1.2 Virtual sensors

• Consumers of sensor data
• Can be triggered by any sensor driver type (physical, virtual, or timer)
• Can also be programmatically triggered to fork a new thread
• Special case of a virtual sensor is a programmatically triggered sensor

4.1.1.3 Timer sensors

• Providers or consumers of sensor data
• Timer-based virtual sensors
• Triggered by internal timer routines, automatically scheduled
• Special case of a timer sensor is a continuously triggered sensor (0Hz timer rate); this sensor cannot have any children

and should be Priority M to work properly
• Limited to run below 64 KHz
• Allowed to output data to the host with the limitation presented in section 4.1.2

4.1.2 Predefined sensors

The BHy2 offers several predefined physical and virtual sensor types in addition to the possibility of adding new driver types.

4.1.2.1 Physical sensor types

Supported predefined physical sensor types are defined in

$SDK/libs/BSX/includes/bsx_physical_sensor_identifier.h and $SDK/libs/SensorInterface/includes/SensorAPI.h and
include the following types:

• BSX_INPUT_ID_ACCELERATION (1)

• BSX_INPUT_ID_ANGULARRATE (3)

• BSX_INPUT_ID_MAGNETICFIELD (5)

• BSX_INPUT_ID_TEMPERATURE_GYROSCOPE (7)

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 22 | 65

• BSX_INPUT_ID_ANYMOTION (9)

• BSX_INPUT_ID_PRESSURE (11)

• BSX_INPUT_ID_POSITION (13)

• BSX_INPUT_ID_HUMIDITY (15)

• BSX_INPUT_ID_TEMPERATURE (17)

• BSX_INPUT_ID_GASRESISTOR (19)

• SENSOR_TYPE_INPUT_STEP_COUNTER (0x20)

• SENSOR_TYPE_INPUT_STEP_DETECTOR (0x21)

• SENSOR_TYPE_INPUT_SIGNIFICANT_MOTION (0x22)

• SENSOR_TYPE_INPUT_ANY_MOTION (0x23)

• SENSOR_TYPE_INPUT_EXCAMERA (0x24)

• SENSOR_TYPE_INPUT_GPS (0x30)

• SENSOR_TYPE_INPUT_LIGHT (0x31)

• SENSOR_TYPE_INPUT_PROXIMITY (0x32)

4.1.2.2 Virtual sensor types

Supported predefined virtual sensor types are defined in $SDK/libs/SensorInterface/includes/SensorAPI.h and
$SDK/libs/BSX/includes/bsx_virtual_sensor_identifier.h. The virtual sensor types in bsx_virtual_sensor_identifier.h are
reserved and not available for custom use when defining new virtual sensors.
Key virtual sensor types are listed below. For an all-inclusive list, see the SDK source files mentioned above.

• SENSOR_TYPE_TEMPERATURE (0x80)

• SENSOR_TYPE_PRESSURE (0x81)

• SENSOR_TYPE_HUMIDITY (0x82)

• SENSOR_TYPE_GAS (0x83)

• SENSOR_TYPE_WAKE_TEMPERATURE (0x84)

• SENSOR_TYPE_WAKE_PRESSURE (0x85)

• SENSOR_TYPE_WAKE_HUMIDITY (0x86)

• SENSOR_TYPE_WAKE_GAS (0x87)

• SENSOR_TYPE_STEP_COUNTER (0x88)

• SENSOR_TYPE_STEP_DETECTOR (0x89)

• SENSOR_TYPE_SIGNIFICANT_MOTION (0x8A)

• SENSOR_TYPE_WAKE_STEP_COUNTER (0x8B)

• SENSOR_TYPE_WAKE_STEP_DETECTOR (0x8C)

• SENSOR_TYPE_WAKE_SIGNIFICANT_MOTION (0x8D)

• SENSOR_TYPE_ANY_MOTION (0x8E)

• SENSOR_TYPE_WAKE_ANY_MOTION (0x8F)

• SENSOR_TYPE_VIRT_EXCAMERA (0x90)

• SENSOR_TYPE_GPS (0x91)

• BSX_OUTPUT_ID_ACCELERATION_PASSTHROUGH (2)

• BSX_OUTPUT_ID_ACCELERATION_RAW (6)

• BSX_OUTPUT_ID_ACCELERATION_CORRECTED (8)

• BSX_OUTPUT_ID_ANGULARRATE_PASSTHROUGH (20)

• BSX_OUTPUT_ID_ANGULARRATE_RAW (24)

• BSX_OUTPUT_ID_ANGULARRATE_CORRECTED (26)

• BSX_OUTPUT_ID_MAGNETICFIELD_PASSTHROUGH (38)

• BSX_OUTPUT_ID_MAGNETICFIELD_RAW (42)

• BSX_OUTPUT_ID_MAGNETICFIELD_CORRECTED (44)

• BSX_OUTPUT_ID_GRAVITY (56)

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 23 | 65

• BSX_OUTPUT_ID_LINEARACCELERATION (62)

4.1.2.3 User provided physical sensor types

Custom physical sensor types may be defined in
$SDK/libs/SensorInterface/includes/SensorAPI.h.

Custom sensor type values must be defined in the range of NON_BSX_INPUT_ID_BEGIN and NON_BSX_INPUT_ID_END.
Do not use any already allocated value.

• NON_BSX_INPUT_ID_BEGIN (0x20)

• …
• NON_BSX_INPUT_ID_END (0x3F)

4.1.2.4 User provided virtual sensor types

Custom virtual sensor types may be defined in $SDK/libs/SensorInterface/includes/SensorAPI.h. Custom sensor type
values must be defined between the values of SENSOR_TYPE_CUSTOMER_VISIBLE_START and
SENSOR_TYPE_CUSTOMER_VISIBLE_END.
• SENSOR_TYPE_CUSTOMER_VISIBLE_START (0xA0)

• …
• SENSOR_TYPE_CUSTOMER_VISIBLE_END (0xBF)

4.1.3 Sensor priority level

One of the BHy2 features is support for multiple sensor priority levels. This guarantees that execution of the
handle_sensor_data functions of triggered sensors is not mixed together – each priority level is executed at a different
time. This feature brings greater flexibility in creating consecutive sensor series.

The base priority levels supported by the BHy2 are:

• PRIORITY_1
o Default value for physical sensors
o Executed as soon as GPIO interrupt occurs

• PRIORITY_2 - PRIORITY_4
o Used by virtual and timer sensors
o Executed when handling sensor data

• PRIORITY_M
o Lowest priority level
o Used by virtual and timer sensors
o Executed in the main execution routine

4.1.4 Sensor trigger chaining

The flow of execution from sensor to sensor is defined by one or more sensor trigger lists in the firmware. Trigger lists are
calculated during the sensor interface initialization and are stored as a linked list using each sensor’s triggerList pointer,
with each physical sensor as the head of a sensor trigger list. The firmware first uses each virtual sensor’s trigger source
sensor type to locate its parent sensor. The virtual sensor is then added to the end of the trigger list which its parent is a
member of. Trigger source and priority level values in virtual sensor descriptors can be used to create complex chains of
sensor triggers. An example of a simple trigger list is shown in Figure 7.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 24 | 65

Figure 7. Example Trigger List

A trigger list may span multiple priority levels; however the list cannot be re-triggered until all sensor drivers on the list have
finished executing. Alternatively, a secondary trigger list can be programmatically triggered to decouple the retriggering. As
an example trigger list, a simple activity algorithm can be realized according to the following sequence: a timer triggers a
virtual tilt, then the virtual tilt triggers a virtual activity. A more complex sensor dependency is shown in Figure 8. This example
shows the trigger lists parsed by stuffelf at build time. Each sensor is introduced by its priority level in square brackets.

Note that if a triggered sensor cannot serve the request in time, e.g. due to priority or processor load, it is possible that data
necessary for that sensor is overwritten and effectively lost. The data is transferred via a single data object, and no buffering
in the form of a FIFO is applied.

Virtual Sensor E

parent

triggerList
priority = M
enabled = 1

Virtual Sensor D

parent

triggerList
priority = 3
enabled = 0

Virtual Sensor C

parent

triggerList
priority = 2
enabled = 1

Virtual Sensor B

parent

triggerList
priority = 3
enabled = 1

Physical Sensor A
triggerList
priority = 1
enabled = 1

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 25 | 65

Figure 8: Example of Complex Sensor Dependency

Note that while the sensor framework supports any type of physical sensor (e.g., BSX_INPUT_ID_ANYMOTION), only the
BSX_INPUT_ID_MAGNETICFIELD, BSX_INPUT_ID_ACCELERATION and BSX_INPUT_ID_ANGULARRATE physical
sensors are expected by the sensor fusion algorithm and have corresponding output sensors. All other physical sensors
must have a corresponding virtual sensor that consumes the physical data and provides it to the host. This can be seen in
Figure 8, where a virtual step counter driver is being triggered by the physical step count sensor in order to provide the output
to the host.

--------- Trigger Lists (physical source) ---------
[1] accel sensor [DriverID 48]
[1] gyro sensor [DriverID 49]
[1] sigmot sensor [DriverID 44]
 [6] hw sigmot sensor [DriverID 239]
 [6] wakeup hw sigmot sensor [DriverID 181]
[1] stepcnt sensor [DriverID 47]
 [6] hw stepcnt sensor [DriverID 238]
 [6] wakeup hw stepcnt sensor [DriverID 211]
[1] stepdet sensor [DriverID 46]
 [6] hw stepdet sensor [DriverID 237]
 [6] wakeup hw stepdet sensor [DriverID 212]

--------- Trigger Lists (virtual: timer) ---------
25Hz Timer
 [2] hang detector sensor [DriverID 224]

--------- Trigger Lists (virtual: NO Source) ---------
unknown
 [3] BSX sensor [DriverID 240]
 [2] accel corr sensor [DriverID 241]
 [2] accel offset sensor [DriverID 209]
 [2] accel passthrough sensor [DriverID 205]
 [2] accel raw sensor [DriverID 203]
 [2] activity sensor [DriverID 235]
 [2] game rotvec sensor [DriverID 252]
 [2] glance status sensor [DriverID 234]
 [2] grav sensor [DriverID 247]
 [2] gyro corr sensor [DriverID 243]
 [2] gyro offset sensor [DriverID 208]
 [2] gyro passthrough sensor [DriverID 207]
 [2] gyro raw sensor [DriverID 244]
 [2] linaccel sensor [DriverID 246]
 [2] pickup status sensor [DriverID 233]
 [4] tilt sensor [DriverID 236]
 [2] wakeup accel corr sensor [DriverID 192]
 [2] wakeup accel raw sensor [DriverID 204]
 [2] wakeup game rotvec sensor [DriverID 200]
 [2] wake status sensor [DriverID 232]
 [2] wakeup grav sensor [DriverID 198]
 [2] wakeup gyro corr sensor [DriverID 194]
 [2] wakeup gyro raw sensor [DriverID 195]
 [2] wakeup linaccel sensor [DriverID 197]

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 26 | 65

4.1.5 Driver hang detection

The sensor framework includes a timer-based hang detector driver which monitors physical drivers for possible hangs.
Hangs are detected if the driver does not start producing samples within 1 second of turning a sensor on or if the number of
actual samples a physical driver produces is less than the expected number of samples, based on the current rate. The
hang detector runs at a rate of 25 Hz.

In the event a hang is detected, the hang detector will issue a reset to the physical driver.

Hang detection does not run for a physical driver if any of the following conditions are true.

• The no_hang flag in the physical driver descriptor is set.
• The current power mode is SensorPowerModeInteruptMotion.
• The current rate is less than 3 Hz.

4.2 Drivers directory structure

Sensor driver code must be located in its own directory in the $SDK/drivers tree. The directory name should reflect the device
name and driver type – for example AK09915Mag. Each driver directory should include four mandatory files as outlined in
Table 8.

Table 8: Driver Directory Content
File in Driver
Directory Note

CMakeLists.txt Compilation Makefile for driver source code

SensorNameType.c Source code for driver functions

SensorNameType.h Header file typically defining register locations and other constants for the
driver

The developer is encouraged to use one of the available driver source codes as a template for creating new drivers.

4.3 Driver CMakeLists.txt file

Figure 9 shows an example of a driver CMakeLists.txt file. The CMakeLists.txt file automatically pulls in the sources from
each driver. The user typically does not need to modify it. The driver directory name must be added to the
ENABLED_DRIVERS definition in the appropriate $SDK/common/config.7189_di03_*.cmake file to be included in the SDK
build.

DRIVER_ID is a unique value which can be queried by the Host to identify the driver ID of the sensor driver in the system.
This allows more generic host driver code to be implemented for the BHy2. Currently unused driver IDs in the ranges of 100-
125 and 165-180 can be used for new drivers. Note that a corresponding definition for the driver ID will be set by the build
system when compiling the driver.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 27 | 65

Figure 9: Custom Driver CMakeLists.txt Example

4.4 Checking for existing Driver IDs

There is a python script in the root directory of the SDK. Running it will show the existing driver names and associated
driver IDs. Using this script will need an existing installation of Python.

4.5 Writing driver code

The actual sensor driver code is typically written in two files. SensorNameType.h should contain the sensor register map and
constant definitions. Its use is highly recommended for improved readability. The majority of the code is written in the
SensorNameType.c source file. Its individual parts are described in the following subsections.

4.5.1 Recommended include files

Figure 10 shows an example of include files typically used for sensor driver code. SensorAPI.h defines constants and
structures used in driver code and includes necessary sensor bus definitions. Timer.h allows the developer to use the timer
for sensor access scheduling and is necessary for polling sensors. bsx_support.h provides access to BSX algorithm data.

Figure 10: Driver Include Files Example

4.5.2 Sensor communication support

Most sensor devices are controlled by the BHy2 via a SPI or I2C interface. There are three possible sensor interface busses:
SIF0, SIF1, and SIF2. SIF0 and SIF1 can be configured to use a SPI master or I2C master block in the BHy2. SIF2 is always
I2C. Note that the BHA260 does not expose the M1 bus. At most, there can be two enabled SPI masters or two enabled I2C
masters, so not all combinations are possible. The combination used for a given firmware image is specified in the board
configuration file’s sif_selection line. See section 2.2.1 for more details.

The BHy2 makes it easy for driver writers by hiding the differences between the I2C and SPI masters with a general purpose
Sensor Bus design and associated read and write functions.

SET(DRIVER_ID 132)
get_filename_component(DRIVER_KEY ${CMAKE_CURRENT_LIST_DIR} NAME)

project(${DRIVER_KEY} C)

FILE(GLOB SOURCES "*.c")

include_directories(../../libs/BSXSupport/includes/
 ../../libs/BSX/includes/)

ADD_ARC_DRIVER(${DRIVER_KEY} {DRIVER_ID} ${SOURCES})

$ python find_BHy2_driver_IDs.py

#include <SensorAPI.h> /* Interface available to custom
hooks and drivers */
#include <Timer.h> /* Timer control routines */
#include <bsx_support.h> /* Access to bsx algorithm data */

https://www.python.org/

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 28 | 65

4.5.2.1 Sensor communication APIs

There are a variety of read and write functions to meet different needs. All the functions take a pointer to the device structure
which is a member of the physical driver’s sensor descriptor structure. The non-blocking functions also take a void pointer to
a data parameter; this is a user-defined value which will be passed unmodified to the user’s callback function as the second
parameter. The function prototypes can be found in $SDK/libs/SensorInterface/includes/SensorAPI.h.

• Blocking – waits for the read or write to complete before resuming execution of the calling function

• SensorStatus write_data(const Device *device, UInt8 reg, UInt8 *buffer, UInt8
bytes)

• SensorStatus read_data(const Device *device, UInt8 reg, UInt8 *buffer, UInt8
bytes)

• Non-blocking – schedules the read or write and immediately returns to the calling function; when the read or write
actually completes, the provided callback function is called; for writes, the buffer of data to write must continue to exist
until the callback is called, which means it cannot be allocated on the stack of the calling function – it must be global.

• void write_data_nonblocking(const Device *device, UInt8 reg, UInt8 *buffer,
UInt8 bytes, void (*callback_fn)(SensorStatus, void*), void *data)

• void read_data_nonblocking(const Device *device, UInt8 reg, UInt8 *buffer,
UInt8 bytes, void (*callback_fn)(SensorStatus, void*), void *data)

• Inline Non-blocking – only available for writes. These calls can be used to send 4 or less bytes from a buffer local to the
calling function which are used immediately – they do not need to persist until the callback, as in the other non-blocking
writes. Note that write_data_slow_inline_nonblocking also introduces a delay between byte transfers (see
“Slow” below).

• void write_data_inline_nonblocking(const Device *device, UInt8 reg, UInt8
*buffer, UInt8 bytes, void (*callback_fn)(SensorStatus, void*), void *data)

• void write_bytes_inline_nonblocking(const Device *device, const UInt8 *buffer,
UInt8 bytes, void (*callback_fn)(SensorStatus, void*),void* data)

• void write_data_slow_inline_nonblocking(const Device *device, UInt8 reg, UInt8
*buffer, UInt8 bytes, void (*callback_fn)(SensorStatus, void*), void *data,
float delay)

• Slow – some sensor devices, especially when in low power states, require long delays between byte transfers; these
slow variants take a delay parameter which sets the minimum time between bytes in milliseconds

• void write_data_slow_nonblocking(const Device *device, UInt8 reg, UInt8
*buffer, UInt8 bytes, void (*callback_fn)(SensorStatus, void*), void *data,
float delay)

• void read_data_slow_nonblocking(const Device *device, UInt8 reg, UInt8
*buffer, UInt8 bytes, void (*callback_fn)(SensorStatus, void*), void *data,
float delay)

• Register-less – the above APIs work well with sensor devices which use a single byte to specify which of the sensor’s
internal registers is to be read from or written to; for devices which cannot work in this mode, there are the following
functions

• void write_bytes_nonblocking(const Device *device, UInt8 *buffer, UInt8 bytes,
void (*callback_fn)(SensorStatus, void*), void *data)

• void read_data_nonblocking(const Device *device, UInt8 *buffer, UInt8 bytes,
void (*callback_fn)(SensorStatus, void*), void *data)

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 29 | 65

4.5.2.2 Sensor communication best practices

The blocking read and write APIs are simple, but they can have a dramatic impact on the runtime behavior of the BHy2.
Whenever these blocking APIs are called by a driver, any other driver running at the same interrupt priority level will be
prevented from running even if they use a different SIF. This is especially bad if the driver using the blocking APIs uses slow
I2C transfers while the blocked driver uses fast SPI transfers and is running at a much higher sample rate.

Another problem can occur if the driver uses delay functions between blocking transfers. These delay functions will again
prevent any other physical driver at the same priority level from doing useful work.

It is best to write your driver in an event-driven, non-blocking fashion. This allows the BHy2 sensor framework to maximize
performance of all sensors on all SIFs, and ensures any non-sensor interrupt handling can proceed efficiently.

Here are some helpful tips:

1. The driver initialization function is called when the system starts up AND later to recover from sensor failures; so it
is important that all driver initialization functions use non-blocking calls and state machines, so they have minimal
impact on the rest of the system

2. Do not use blocking calls; use non-blocking calls which handle next steps in a series of steps from one or more
callback functions

3. The callback parameter can be NULL if no further processing must be done upon receipt of read data, but, your
driver will not be able to detect fatal read failures on I2C devices without that callback

4. Do use the data parameter for each callback to simplify your logic; it can be used to maintain a state variable, so one
callback function can handle a multi-step initialization function

5. Do not use fixed delays but instead use the slow APIs; these use the timer hardware so other drivers can proceed
as needed until the timer expires

6. Do use the inline writes for small writes, so you do not have to use global buffers, which consume RAM unnecessarily
7. For non-blocking writes larger than 4 bytes or for non-blocking reads, use global buffers, as they must be valid in

both the original calling function and later in the callback function.

4.5.3 Sensor descriptor structure

In order to achieve interoperability of application code with multiple different sensors from many vendors, the driver interface
is defined in a sensor independent fashion using a sensor descriptor. Every sensor driver implementation must provide an
initialized declaration of a sensor descriptor for that sensor. The sensor descriptor is composed of a common sensor
descriptor header followed by data specific to physical or virtual sensors.

Note that a sensor driver must not directly modify data in its own sensor descriptor, aside from the members that are initialized
at build time or initialization, with the exception of the status.enabled bit (see Table 9) and the int_enabled bit (see
Table 15). Also, a sensor driver must not modify the sensor descriptor data for any other sensor drivers. The sensor
framework is completely responsible for managing and setting all other sensor descriptor information. In addition, some
sensor descriptor fields may be configured through parameter I/O by the host.

4.5.3.1 Sensor descriptor header

Physical and virtual sensors share a common header that includes the following fields.

• TriggerList
• SensorInfo
• SensorType

The TriggerList field is a pointer to a sensor descriptor header and is used to form a linked list of sensors that are triggered
by a single sensor trigger source. During the build process, the stuffelf utility uses information from the trigger source
field for all virtual sensors to form linked lists of sensors that are triggered by a single source sensor trigger. Driver code
should not modify this list.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 30 | 65

The SensorInfo structure outlined in Table 9 provides basic information about a virtual or physical sensor driver, as well as
the current status of the driver. The definition of this structure can be found at
$SDK/libs/SensorInterface/includes/SensorAPI.h. The driver ID and version are filled in by stuffelf based on
information provided in the driver config file. The status fields are updated during runtime by the sensor framework and
cannot be modified by the user with the exception of status.enabled. This bit can be modified by the user in the
VirtualSensorDetermined hook to turn on a sensor that the user requires to be on (whether the host requires it or not).
See section 4.8 for details on how to use hooks.

Table 9: SensorDescriptor – SensorInfo Structure

Field Type Description Driver access

Id UInt8

The current driver ID of the
sensor, should be set to
DRIVER_ID. Stuffelf will
incorporate the value set in
the driver config file at build
time.

Set to DRIVER_ID in
descriptor definition, then
read-only

version UInt8

The current driver revision of
the sensor, should be set to
DRIVER_REV. Stuffelf will
incorporate the value set in
the driver config file at build
time.

Set to DRIVER_REV in
descriptor definition, then
read-only

resolution UInt8 Number of bits of resolution
of the sensor input data

Set in descriptor definition,
then read-only

reserved UInt8 Reserved byte None

status.triggered UInt8 The sensor has been
scheduled to run

Read-only via the
isSensorTriggered API
function

status.enabled UInt8 The sensor has been
enabled

Can be modified only in the
VirtualSensorDetermined
hook

status.i2c_nack UInt8 The sensor has had an I2C
communication error Read-only

status.devid_error UInt8 The sensor was not detected
at the supplied address Read-only

status.transient_error UInt8 The sensor had a transient
error Read-only

status.list_ran UInt8
Flag used to track whether all
triggered sensors on a trigger
source’s trigger list have run.

Read-only

status.rate_changed UInt8
The host interface has
updated the
lastRequestedRate entry

Read-only

status.range_changed UInt8
The host interface has
updated the
lastRequestedRange entry

Read-only

status.pending_trigger UInt8
The sensors trigger has not
finished running, but a new
trigger has arrived

Read-only

status.enabled_ack UInt8
The sensor framework has
acked that the driver is
enabled

Read-only

status.just_turned_on UInt8

Signal from physical sensor
to associated virtual sensor;
used to trigger an on-change
sensor to output its current
value

Read-only

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 31 | 65

Field Type Description Driver access

status.reserved UInt8 Reserved None

pad0
UInt3
2 Reserved None

The SensorType structure outlined in Table 10 provides basic sensor properties, including the sensor ID, sensor type and
a number of flags that specify the sensor’s behavior. The definition of this structure can be found at
$SDK/libs/SensorInterface/includes/SensorAPI.h. These values should be set in the declaration of the driver’s sensor
descriptor, and should not be modified during run-time.

Table 10: SensorDescriptor – SensorType Structure

Field Type Description

value UInt8 Sensor ID

flags 2 bits Sensor type flags - Virtual, Timer or Physical

wakeup_ap 0 / 1 If true, sensor data is placed in the wakeup FIFO, otherwise
the non-wake FIFO.

no_hang 0 / 1 Disable hang detection code for physical sensors

no_decimation 0 / 1 Always use the parent sensor rate, even if a slower rate is
requested by the host

on_change 0 / 1 This is an on-change sensor, which will require special
processing when samples are lost

always_on 0 / 1 This is used to ensure that the driver is always enabled, even
if no children are enabled

hidden 0 / 1
This sensor should be hidden by the host interface. Note that
sensors may also be made invisible by assigning a sensor
type in the invisible range.

decimate_integer 0 / 1
If 0, virtual sensor output rate will decimate from the source
sensor rate by a power of two. If 1, any integer value will be
used.

on_change_map_bit 5 bits
Bit map value assigned to each on-change sensor, used to
track whether an on-change sensor has been triggered. Used
when handling lost on change events.

reserved_flags 2 bits Reserved

reserved UInt8 Reserved

4.5.3.2 Physical sensor descriptor fields

Following the sensor descriptor header, the physical sensor descriptor has a number of additional fields specific to physical
sensors, including the following.

• Device structure
• Function pointers
• Data parameters

The Device structure outlined in Table 11 provides a physical descriptor of a physical sensor device. Note that some device
data fields of physical sensors are replaced by the stuffelf utility using data in the board configuration file, since their
value depends on the actual application (options.i2c.address, irqPin, irqDis). The I2C and SPI protocol
parameters are used to configure the physical interface to the sensor.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 32 | 65

Table 11: SensorDescriptor – Physical Device Structure

Field Value Type Description

interface.handle void* The interface handle based on the interface
type, initialized by the firmware

interface.type SensorInterfaceTy
pe The selected interface type for the sensor

interface.options SensorInterfaceTy
pe All possible interface types for this sensor driver

options.i2c I2C_Device_t See Table 12

options.spi SPIM_Device_t See Table 13

irqPin 5 bit GPIO Pin to monitor for interrupts

irqEdge 0/1 1=Rising edge, 0=Falling edge

irqDis 0/1 1=No GPIO pins used for this sensor

Table 12: I2C Device (I2C_Device_t)

Field Value Type Recommended Value Notes

maxClock 10 bits 100, 400, 1000 Max clock speed supported
by the device (kHz)

Reserved 6 bits Reserved
hasClockStretchin
g 0 / 1 0 0=No clock stretching,

1=Clock stretching

address 7 bits 7-bit slave address (MSB =
0)

Reserved UInt8 Reserved

Table 13: SPI Master Device (SPIM_Device_t)

Field Value Type Notes

maxClock UInt16 Max SPI clock speed supported by the device (kHz)

csPin UInt8 GPIO pin number of the chip select signal

csLevel UInt8 Chip select value to select the chip, 1=Active high, 0=Active low

cpol 0 / 1 SPI clock active polarity, 0=negative, 1=positive

cpha 0 / 1 SPI clock active phase, 0=leading clock edge, 1=trailing clock edge

en3wire 0 / 1 Disable/enable 3-wire SPI

lsb_first 0 / 1 SPI data shift direction, 0=MSB first, 1=LSB first

Reserved 4 bits Reserved

reg_shift 3 bits Number of bits to shift the register address by to generate the
command byte

read_pol 0 / 1 Read signified by a 0 or a 1 in the command byte

read_bit 4 bits Bit position for the read/write bit, often bit 7 or bit 0.

The function pointers in a physical sensor descriptor are outlined in Table 14. These fields specify pointers to functions that
set and retrieve sensor state and parameter settings as well as scheduling a read of the sensor sample. These values should

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 33 | 65

be set in the declaration of the driver’s sensor descriptor, and should not be modified during run-time. More details on each
of these functions can be found in section 4.4.4.

Table 14: SensorDescriptor – Physical Sensor Function Pointer Fields

Function Description

Sensor State and Parameter Setting

initialize Verify the sensor connection and initializes the sensor into a known power
down state

set_power_mode Put the sensor to the requested power mode

set_sample_rate Put the sensor to the requested rate to produce data (sample rate)

set_dynamic_range Set the sensor to the requested dynamic range, return the actual dynamic
range

set_sensor_ctl Set specific sensor configuration (FOC, OIS, or FST)

enable_interrupts Enable interrupt generation by sensor

disable_interrupts Disable interrupt generation by sensor

Sensor State and Parameter Query

get_power_mode Return the current sensor power mode

get_sample_rate Return the current sensor sample rate

get_scale_factor Return multiplicative scale factor for conversion of sensor result to
common units

get_dynamic_range Return the current dynamic range sample rate

get_sensor_ctl Return specific sensor configuration (FOC, OIS, or FST)

Sample Data Handling

get_sample_data Schedule I2C read transaction to read a sensor sample

The Data parameters in a physical sensor descriptor are outlined in Table 15. These data fields contain actual parameters
which are needed for the system to handle physical sensors properly. The CalMatrix field is provided by stuffelf from
the driver config file and is used to rotate (if needed) the physical sensor data to match the required sensor orientation of the
device from a user’s perspective. The lastRequestedRate and lastRequestedRange fields are used by the host
interface API call for the requested rate/range if a rate/range change is needed.

Table 15: SensorDescriptor – Physical Sensor Data Fields

SensorDescriptor Item Value Type Notes

Data timestamp for the sensor

latestTimestamp UInt64 Latest valid timestamp

newTimestamp UInt64 Latest timestamp, even for invalid data

Minimal value of parameters

minRate float Minimal rate (in Hz) of the sensor

Maximal value of parameters

maxCurrent float Maximal current draw of the sensor. units: [mA]

maxRate float Maximal rate (in Hz) of the sensor

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 34 | 65

SensorDescriptor Item Value Type Notes

maxDynamicRange UInt16 Maximal dynamic range of the sensors in [units]

Default value of parameters

defaultDynamicRange UIn16 Default dynamic range to use if not requested by the
host

Request for parameter changing

lastRequestedRate float Last requested rate for the sensor as determined by
the outerloop. Do not modify.

lastRequestedRange UInt16 Last requested range for the sensor. Do not modify.

Sensor calibration

CalMatrix SInt8 [9] 3-axis calibration matrix to apply to 3-axis sensor data

Data access

sensorData void* Direct access to sensor data

numAxis 7 bits Number of axes in the sensor

Hang detection

resetDivisorCount UInt8 Number of sample events needed before a sensor is
considered alive

resetDivisorTimeout UInt8 Number of 25 Hz timer intervals to wait before
checking for a hung sensor

sampleCount UInt8 Number of sample events since the last hang check

resetCount UInt8 Number of recent reset events for the sensor

resetCountLimit UInt8

needsReset UInt8 Flag indicating that the sensor should be reset

int_enabled 0 / 1
Sensor interrupt or timer state, 0 = disabled, 1 =
enabled. Should be set/cleared when the driver
enables/disables the sensor interrupt.

Sensor control parameter read/write

sensorControlCode 7 bits Sensor control parameter code

sensorControlDir 0 / 1 Sensor control parameter direction, 0 = write, 1 = read

4.5.3.3 Virtual/timer sensor descriptor fields

Virtual and Timer sensors share the same Sensor Descriptor. For a virtual/timer sensor, the Sensor Descriptor is composed
of a Sensor Descriptor Header followed by a number of additional fields specific to virtual/timer sensors, including the
following categories.

• Trigger source
• Physical source
• Function pointers
• Data parameters

The Trigger source structure specifies the ID (value) and type (flags) of the sensor that is a trigger for this virtual sensor.
For example, a virtual accel driver would specify its trigger source value as BSX_INPUT_ID_ACCEL and its trigger source
flags as DRIVER_TYPE_PHYSICAL_FLAG. A timer sensor must also fill in the timer field in the trigger source structure. At

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 35 | 65

build time, the stuffelf utility uses the trigger source from each virtual sensor to compile the trigger lists. Trigger source
data of virtual sensors are set during initialization.

Table 16: Trigger Source Timer
SensorDescriptor
Item

Value Type Notes

Decimate 2 bits 0=Never, 1=Always, 2=Power of two

decimate_max 6 bits Maximal value for rate decimation

Index SInt8

Rate UInt16 Actual sensor data rate

The Physical source specifies the ID and type of the physical sensor that primarily affects this virtual sensor’s data.

The Function pointers in a virtual sensor descriptor are outlined in Table 17. These fields specify pointers to functions that
process and allow access to sensor data as well as initialize the virtual sensor. More details on each of these functions can
be found in section 4.4.4.

Table 17: SensorDescriptor – Virtual Sensor Function Pointer Fields

Function Description

Sensor State and Parameter Setting

Initialize Verify sensor connection and initializes sensor into a known power
down state

Sample Data Handling

handle_sensor_data New data processing

get_last_sensor_data Used for on-change sensors

The Data parameters in a virtual sensor descriptor are outlined in Table 18. Virtual Sensor Descriptor data fields contain
actual parameters which are needed for the system to handle sensors properly. If the programmer wishes to update the
dynamic range of the sensor, they should use the host interface API call to update the requested rate/range if a rate/range
change is needed.

Table 18: SensorDescriptor – Virtual Sensor Data Fields

SensorDescriptor Item Value Type Notes

priority UInt8 The priority level to run the virtual sensor calculations

decimationLimit UInt8 Internal use only

decimationCount UInt8 Internal use only

outputPacketSize UInt8 The number of bytes in the sensor output packet,
excluding the Sensor ID

timestamp UInt64 The timestamp of the source causing the driver to be
triggered

Request for parameter changing

lastRequestedRange UInt16 The last requested range for the sensor as determined
by the host interface. Do not modify.

lastRequestedRate float The last requested rate for the sensor as determined
by the host interface. Do not modify.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 36 | 65

4.5.4 Sensor driver functions

This section discusses the functions that should be defined for each sensor driver.

Not all functions from function pointer fields for physical and virtual sensors must be implemented. Please see section 4.6
for the functions required. Unimplemented function pointers must be set to NULL in the Sensor Descriptor data structure.

Note that it is very important that none of the sensor descriptor functions should be called directly from driver code. They are
provided by each driver, but must only be called by the sensor framework.

4.5.4.1 Sensor State and Parameter Setting Functions

The following two sections describe individual sensor functions defined in the Sensor Descriptor.

• initialize is called whenever the BHy2 transits from Initialized state to operational state. This function may also
be called if a sensor is in an unknown/unusable state. This function shall not affect the state of another sensor driver. In
the event of a composite sensor, this driver may temporarily affect the state of another sensor driver, however once
initialization is complete, the sensor should return to the state specified by the other sensor driver. This function must
perform the following operations:
o Verify that a device is found with the specified I2C/SPI configuration. The status code SensorErrorNonExistant

must be returned if no device is found.
o Verify that the driver is capable of talking with the found device. This is often done by checking the WHO_AM_I

register if available. If a device that the driver does not understand is found, SensorErrorUnexpectedDevice
must be returned by the function.

• Once a known device is found, the initialize function should reset the sensor to a known state for the driver, as well as
ensure that the device is in the SensorPowerModePowerDown power mode.
set_power_mode is called shortly after initialize to handle sensor power mode transitions. It is also called during
sensor teardown operation before transition to Initialized. This function shall not affect the power mode of other
sensor drivers. Supported sensor power modes are defined in SensorAPI.h and are described in Table 19.
Requirements for which power modes are required to be implemented are shown in Table 20. The driver developer
should map sensor power modes to actual power modes of a particular sensor (see example drivers for inspiration). This
function must return the actual power mode selected by the sensor driver, even if the requested power mode is
unsupported. After setting the required power mode, the callback function sensorPowerModeChanged must be called
to report that the power mode has been updated.

Table 19: SensorPowerMode Definition

SensorPowerMode Notes

SensorPowerModePowerDown
Lowest power state supported by the sensor driver. Sensor data
conversions should be disabled here and the device should be shut down.
The driver should be able to transition to an active state within 1000 ms.

SensorPowerModeSuspend
Low power state where sensor data conversions have been disabled,
however the system must be able to transition into an active state within
100 ms. This state may be the same as SensorPowerModePowerDown.

SensorPowerSelfTest

Perform a sensor self-test. The sensor driver must call the
reportSelfTestResult function once the test has completed, as well
as transition to the SensorPowerModePowerDown state.
Note that the x, y, z offset results should be provided in the native units for
a given sensor, e.g., mg for accel or dps for gyroscope.

SensorPowerModeFOC

Enter a FOC calibration mode in the sensor. The sensor driver must call
the reportFOCResults function once the test has completed, as well as
transition to the SensorPowerModePowerDown mode once the FOC is
complete.
Note that the x, y, z offset results should be provided in the native units for
a given sensor, e.g., mg for accel or dps for gyroscope.

SensorPowerModeInterruptMotion Put the sensor to a special state where the device only provides interrupts
when a specified sensor data threshold has occurred.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 37 | 65

SensorPowerMode Notes

SensorPowerModeOneShot
Cause the sensor to complete a single sensor data conversion.
SensorPowerModeSuspend or lower should be entered automatically
afterwards.

SensorPowerModeLowPowerActive

Operational power state where sensor settings are optimized for low
power. This state may have higher noise than the
SensorPowerModeActive mode. If SensorPowerModeActive is
implemented, this state must also be implemented; however it may be the
same state as SensorPowerModeActive.

SensorPowerModeActive
Operational power state where sensor settings are optimized for high
performance. This state should have minimal noise in sensor
measurements.

Table 20: set_power_mode Driver Requirements

Power Mode
Sensor Type/Requirements

All Physical Sensors Accelerometer

SensorPowerModePowerDown Required - may duplicate
SensorPowerModeSuspend

Required - may duplicate
SensorPowerModeSuspend

SensorPowerModeSuspend Required Required

SensorPowerModeSelfTest Optional Optional

SensorPowerModeFOC Optional Optional

SensorPowerModeInterruptMotion Optional Recommended, will be required in
future releases

SensorPowerModeOneShot Optional Optional

SensorPowerModeLowPowerActive Required - may duplicate
SensorPowerModeActive

Required - may duplicate
SensorPowerModeActive

SensorPowerModeActive Required Required

• set_sample_rate is used to set the sensor measurement rate. This function is called after initialization and any time

the requested sensor sample rate has changed. If a sensor supports a continuous conversion mode, this function will set
the corresponding register in the sensor to enable the mode. The function typically checks an internal list of supported
rates and sets the one which is greater or equal to the requested rate.
In the case of polled sensors, the requested rate is ensured by the internal timer. In that case set_sample_rate uses
the timer API defined in Timer.h for scheduling the sensor interrupt at regular intervals (For an example of a polled
sensor driver refer to the AK09915Mag). Note that set_sample_rate and set_power_mode can be called in any
order. Actual operation of the sensor should be controlled by set_power_mode while the set_sample_rate should
only set the rate register.
This function is required if the sensor supports SensorPowerModeLowPowerActive or SensorPowerModeActive.
This function shall not modify the sample rate of another sensor driver unless the sensor is a composite sensor, in
which case, the sample rate of the other composite sensor driver may be updated. The composite sensor rate should
be greater than or equal to all requested rates for the sensor if they cannot be set individually. All sensors must implement
the callback function sensorRateChanged() that updates variables for hang detection calculation.

• set_dynamic_range is used to change the maximum range of a sensor. Implementation is required, even if it is an
empty function. This function is called during initialization to set the sensor into the desired range for the main fusion
algorithm. This function must set the sensor to the specified range or higher. For example, if a gyro supports 100, 500,
2000 dps, a request of 300dps will result in a range of 500 dps, while a value of 1000 dps would result in a value of 2000
dps being set.

• enable_interrupts / disable_interrupts should enable/disable interrupts for a given sensor at its source (the
sensor). Implementation is optional. In some sensors this is equivalent to enabling/disabling actual operation. If that is

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 38 | 65

the case, the driver should check the current driver power state and enable operation only when sensor is in one of its
operational states.

• In case of polled sensors, the enable/disable interrupt functions should enable/disable scheduling the timer interrupt
(refer to the AK09915MagSensor driver code for an example). The enable interrupts function should allow interrupts
from the sensor to be received within 100 ms of the function being called.

4.5.4.2 Sensor state and parameter query functions

Implementation of all query functions is required for all sensor drivers.
• get_power_mode, get_sample_rate, and get_dynamic_range should return the actual sensor settings. Note

that the driver should cache power mode, sample rate value and dynamic range values in internal state variables instead
of reading them from the sensor over the sensor bus.

• get_scale_factor is used to convert raw sensor data to calibrated values. It returns factors specific to a given sensor
type. Note that these values could depend on the dynamic range setting.

4.5.4.3 Sensor data handling functions

Table 21 provides a summary of the sensor data handling functions for both physical and virtual sensors.

Table 21: Summary of Sensor Data Handling Functions

Sensor Driver Function Physical Virtual

interrupt_handler sensorInterruptHandler N/A

get_sample_data Save callback
Read sensor data using sensor bus N/A

handle_sensor_data

Extract data into correct form (from
physical sensor data format to format
expected by virtual
handle_sensor_data function)
Save data to self->sensorData
Call saved callback

Begin virtual calculations.
Use
reportSensorEvent to
cause data output

Figure 11 shows the interaction between the Sensor Driver routines for physical sensors and other software elements. The
physical sensors feed data to virtual sensors using the sensor framework. The programmer should refrain from including
calculations in physical sensor drivers, and should instead utilize virtual sensor drivers for calculations.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 39 | 65

Figure 11: Physical Sensor Data Handling

A physical sensor signals availability of new data using a GPIO interrupt line. The GPIO interrupt service routine (ISR)
determines which GPIO interrupts have fired and calls gpioInterruptHandler for each GPIO that has fired.
gpioInterruptHandler is shared by all GPIO-based physical sensors. This function reads timestamps from the
appropriate register and calls sensorInterruptHandler with the determined 64-bit timestamp and physical sensor
descriptor.

sensorInterruptHandler stores the timestamp in appropriate internal data structures. It then calls the sensor specific
get_sample_data function from the passed in physical sensor descriptor with an interrupt callback that is used to notify
the framework once the new data has been read in.

The sensor specific get_sample_data typically calls read_data_nonblocking to read out the sensor data that caused
the interrupt. This function must ensure that the passed in callback function is called once the sensor data has been read in.
Typically, this requirement is fulfilled by storing the pointer in an internal static variable (part of the driver code) and calling it
from the sensor bus read data callback function. This read data callback function is used to format the sensor data in a
generic way, then to call the framework callback function.

read_data_nonblocking is part of the Sensor Bus Interface API that abstracts the lower level I2C /SPI bus interface from
the sensor driver. It calls i2c_read_data_nonblocking or spi_read_data depending on whether the sensor driver initialized
the sensor device as an I2C or SPI device. These functions schedule a read transfer on the bus that will be executed once
all previous transactions have finished. If no pending transactions exist, then it will immediately start the requested
transaction. Once the read transfer has completed, it will call back into the driver with the transaction result. Please note that
the blocking version of read_data/write_data cannot be used in priority level 1 code (such as sensor bus callbacks,
timer callbacks, parameter read/write handlers, and GPIO handlers).

I2C Controller (HW)

Built-in firmware – sensor independent

Sensor Driver Level
sensor specific

Sensor Bus Level
sensor independent

GPIO ISR
For each triggered GPIO call
gpioInterrupt Handler(gpio)
 Read HW Timestamp
 sensorInterrupt Handler(Timestamp, PhysicalSensorDescriptor)

Sensor
Interrupt
 to GPIO

sensorInterrupt Handler(Timestamp, PhysicalSensorDescriptor)
 Save Timestamp
 Call get_sample_data(&InterruptCallback, PhysicalSensorDescriptor)

InterruptCallback (PhysicalSensorDescriptor)
 Trigger dependent Virtual sensors
 Spawn subsequent Data Processing

get_sample_data(&InterruptCallback, PhysicalSensorDescriptor)
 Save Interruptcallback function address
 Call read_data_nonblocking(&handle_sensor_data)

handle_sensor_data(Status, PhysicalSensorDescriptor)
Format data into correct form
Call saved Interruptcallback function(PhysicalSensorDescriptor)

i2c_read_data_nonblocking
Schedule i2c read transfer
using I2C Transaction Queue

I2C
Transaction

Queue

I2CMasterDone ISR
 Retrieve data from I2C Controller
 Handle error conditions
 Schedule next transaction
 Call handle_sensor_data(Status,
 PhysicalSensorDescriptor)

New I2C Transfer Request I2C Transaction Done Interrupt

read_data_nonblocking

I2C SPI

I2C Driver SPI Driver
spi_read_data
Schedule SPI read transfer
using SPI Transaction Queue

SPI
Transaction

Queue

SPI Controller (HW)

SPIM_HandleInterrupt
 Retrieve data from SPI Controller
 Handle error conditions
 Schedule next transaction
 Call handle_sensor_data(Status,
 PhysicalSensorDescriptor)

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 40 | 65

The I2C /SPI callback functions extract the data result and status information from the data read on the bus. Typically, byte
swapping, shifting, and basic calibrations are done here. The driver should also check the data validity based on sensor error
indications (if available). Finally, these functions call back into the sensor framework utilizing the stored
interruptCallback function. The interruptCallback triggers other virtual sensors that are dependent on this
physical sensor.

4.5.4.4 Virtual sensor data handling functions

Figure 12: Virtual Sensor Data Handling

Figure 12 shows the interaction between Virtual Sensor Driver routines and other software elements for virtual sensors.
Virtual sensor drivers are able to consume data from physical sensors and other virtual sensors and also provide it to other
virtual sensors. These drivers should contain any needed calculations. The following paragraphs describe the typical flow of
control and data when virtual sensors are triggered.

Triggering of a virtual sensor is signaled by a software interrupt setting the SWI2 bit to one in the AR_SOFTWARE_INT register.
The SWI ISR calls the handleTriggeredSensors function as soon as the execution of a higher interrupt priority is finished.

handleTriggeredSensors goes through all defined physical drivers and timer drivers and calls handleTriggerList
with input parameters referencing the SensorDescriptorHeader* source and UInt8 priority (the priority is passed
in from SWI ISR routines).

handleTriggerList checks whether the input sensor is triggered. If it is, the function goes through the trigger list and
calls handle_sensor_data functions for the sensors which are triggered and whose priority fits the required priority level.

handle_sensor_data virtual sensor function processes data and calls reportSensorEvent for sending data to the host
interface when required.

4.5.5 Using custom sensor IDs to send data to the host

If a new custom virtual driver produces data that does not conform to an existing BSX sensor type already defined in the
datasheets of BHI260AB and BHA260AB, Reference 1 or Reference 2, then you will need to define your own by completing
the following steps.

1. Select a new Sensor ID (see section 4.1.2.4).
2. Set the virtual sensor descriptor .type.value field to the new Sensor ID.
3. Determine the data packet format (e.g., 3 16 bit signed integers).
4. Determine the size of the whole sensor data packet (1 byte for Sensor ID plus the size of the data packet). This value

goes in the .outputPacketSize field of the sensor descriptor.

When you add a custom virtual sensor, you specify the new Sensor ID in the virtual sensor descriptor’s .type.value field.

Built-in firmware – sensor independent

Sensor Driver Level – sensor specific

SW ISR
Call handleTriggeredSensors(priority)

SW
Interrupt

reportSensorEvent(PhysicalSensorDescriptor, &output, timestamp)
Send data to the host interface

handle_sensor_data(SensorDescriptor)
Perform sensor data evaluations
reportSensorEvent(SensorDescriptor, &output, timestamp)

 handleTriggeredSensors(priority)
 Go through all defined physical and timer drivers and call
 handleTriggerList(SensorDescriptor, priority)

handleTriggerList(SensorDescriptor, priority)
Go through the trigger list and call (if driver is triggered and priority
level fits)
handle_sensor_data(SensorDescriptor)

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 41 | 65

4.5.6 Connection between Driver ID and Sensor ID

The link between driver ID and sensor ID is made using the CMakeLists.txt file in the source directory for your new virtual
driver, the board config file used to specify the contents of your firmware image, and the virtual sensor descriptor in the
driver’s .c file. The driver ID must be placed in the sensor descriptor in the .info.id field in addition to the CMakeLists.txt file.

The sensor ID only appears in the virtual sensor descriptor; only virtual sensors can output data to the host. If you add a new
physical sensor driver (e.g., a humidity sensor), you also need to add a corresponding virtual sensor to be triggered by your
physical sensor, access the physical sensor data, convert it to the proper host format, then send it to the FIFO with
reportSensorEvent.

4.5.7 Virtual sensor host interface

When the firmware starts up, internal data structures used to organize the sensor drivers are initialized. These structures are
then automatically used by the host interface firmware to handle host requests. This will be done for you; there is no effort to
have your sensor driver configured or report its status.

These internal data structures exist for all non-wakeup and wakeup sensors. These structures include the current host
request for each sensor’s sample rate and latency; the size in bytes of the event to be placed in the FIFO; whether the sensor
is on-change, etc. When your virtual sensor driver calls reportSensorEvent, the sensor framework uses these structures
to decide which FIFO (none, either, or both) to insert the data into. If the sample rate the host requests for one FIFO is
different from the other FIFO, the firmware will automatically decimate it so that fewer samples go into the lower rate FIFO.

4.5.8 Handling special cases

Table 21 summarizes the approach to write sensor drivers for the most typical sensors. Only the get_sample_data /
handle_sensor_data functions have to be programmed and the interrupt handler has to be correctly selected. However,
there are special cases which require more custom programing. Special cases are described briefly in Table 22. A detailed
description of these special cases is beyond the scope of this document. The user is encouraged to contact Bosch Sensortec
for further assistance with writing drivers for special cases.

Table 22: Summary Special Sensor cases

Special Case What to do ?

Composite device with shared interrupt
pin
between multiple sensor types

• Custom interrupt_handler
• Sensor bus read to determine source of interrupt
• Sensor bus read callback function to direct execution

to the generic interrupt handler for other sensor
drivers (sensorInterruptHandler())

Polling sensor with scheduled
start of measurement

• Scheduling done using Timer.h functions
• Timer ISR sends sensor bus command to start

measurement
• Sensor data availability signalled using GPIO and

processing using standard interrupt handlers
(gyro/mag/accel/sensor).

Polling sensor with scheduled
new sensor data read
(no sensor GPIO IRQ)

• No interrupt_handler (no GPIO interrupt)
• Scheduling of data read done using Timer.h

functions
• Timer ISR must create timestamp and call standard

interrupt handler (sensorInterruptHandler())
Virtual sensor with continuous
triggering

• Trigger source is Timer with a 0Hz rate
• Cannot have any children

Virtual sensor with programmatic
triggering

• Programmer must call
triggerSensors(descriptor) to start the trigger
chain

• Rate is determined by programmer and may vary

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 42 | 65

4.6 Sensor data injection drivers

The Set Sensor Data Injection Mode and Inject Sensor Data commands give the host the ability to inject sensor data into the
sensor framework instead of receiving sensor data from physical sensors. Sensor data injection requires that special data
injection drivers are built into the firmware image instead of the normal sensor drivers. These drivers must register themselves
with the sensor data injection module during initialization. The function prototype for this is shown in Figure 13. In addition,
the driver must handle injected data in its get_sample_data function and pass the injected data on to the sensor
framework.

Figure 13: Sensor Data Injection Function APIs

The following sections provide more details on sensor data injection driver requirements.

4.6.1 Initialization
Every sensor data injection driver must register information with the sensor data injection module in its initialization
function. This information includes a pointer to its physical sensor descriptor, a pointer to the data buffer where incoming
sensor data should be copied, and the packet size for incoming data. The driver should initialize an sdi_entry_t
structure as shown in Figure 14 with this data and then call SDI_initializeSensor.

Figure 14: Sensor Data Injection Structure for Initialization

4.6.2 Set sample rate
The set_sample_rate function in a sensor data injection driver must inform the sensor framework of a sample rate change
by calling sensorRateChanged. The sensor data injection module will then send an Injected Sensor Configuration Request
to the host to inform the host of the rate change. The host should respond by adjusting the rate at which it is injecting data to
the sensor.

4.6.3 Get sample data
When injected sensor data is received from the host the sensor data injection module will find the registered sensor driver
with a matching driver ID and then copy the data into the driver’s data buffer that was registered during the sensor driver
initialization. It will then call the sensor interrupt handler for the sensor driver. This results in a call to the get_sample_data
function for the sensor driver. At this point, the driver should perform any necessary calculations on the injected data, copy
it into its sensorData buffer, and call the callback. The callback will perform the steps to insert the injected sensor data into
the virtual sensor framework.

4.6.4 Other required sensor functions
Data injection sensor drivers must implement and provide emulated functionality for a minimum set of additional driver
functions, including the following.
• set_power_mode
• get_power_mode

SensorStatus SDI_initializeSensor(sdi_entry_t *entry);

typedef struct _sdi_entry_type_
{
 PhysicalSensorDescriptor * sensor;
 UInt8 *dataBuffer;
 UInt8 packetSize;
 struct _sdi_entry_type_ *next;
} sdi_entry_t;

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 43 | 65

• set_sample_rate
• get_sample_rate
• get_scale_factor (acceleration, magnetic field, gyroscope, pressure, humidity, and temperature)
• get_dynamic_range
• set_dynamic_range (acceleration and gyroscope)

4.6.5 Driver config file and custom board file
The driver config file for a sensor data injection driver should specify the driver type as the intended physical driver type (e.g.,
accel, gyro, mag) and the driver ID as any allowed unused driver ID.

It is recommended that a new board file is used to include only the sensor data injection drivers as the physical drivers. Any
virtual sensors that use the same type of physical source data may be included. When specifying the sensor injection driver
as a physical sensor, the bus must be specified as none instead of SPI or I2C. If appropriate, the calibration and offset
values should be identical to those of the actual physical sensor that is being emulated.

4.7 Driver coding requirements

All published sensor drivers must follow the following requirements:

• Req 1.1 The physical driver must include a PhysicalSensorDescriptor definition in the
.phys_sensor_descriptor section.

• Req 1.2 The SensorDescriptor must contain a non-zero sensor type.
• Req 1.3 The SensorDescriptor must contain a non-zero sensor maxI2CSensorSpeed. (Ignored for SPI

interfaces.)
• Req 1.4 The SensorDescriptor must contain a non-zero sensor driverID.
• Req 1.5 The SensorDescriptor must contain a non-zero sensor driverVersion.

• Req 2.1 The initialize function must be implemented for BSX_INPUT_ID_MAGNETICFIELD,
BSX_INPUT_ID_ACCELERATION, and BSX_INPUT_ID_ANGULARRATE.

• Req 2.2 The initialize function must be implemented for all sensors supporting
SensorPowerModeLowPowerActive or SensorPowerModeActive.

• Req 2.3 The initialize function must return SensorErrorNonExistant if no device was found at the
specified I2C address. (Ignored for SPI interfaces.)

• Req 2.4 The initialize function must return SensorErrorUnexpectedDevice if an unknown device was
found at the specified I2C address. (Ignored for SPI interfaces.)

• Req 2.5 The initialize function must place the sensor into the SensorPowerModePowerDown power mode.
• Req 2.6 The initialize function must not modify the power mode of any other sensor driver.

• Req 3.1 The set_power_mode function must be implemented for all sensors.
• Req 3.2 The set_power_mode function must return the actual power mode selected by the sensor driver.
• Req 3.3 The set_power_mode function must select an implemented power mode if that power mode is selected.
• Req 3.4 The set_power_mode function must keep the previous power mode if the requested power mode is not

implemented or supported.
• Req 3.5 The set_power_mode function must implement SensorPowerModePowerDown and
SensorPowerModeSuspend.

• Req 3.6 The set_power_mode function may select SensorPowerModePowerDown or
SensorPowerModeSuspend if SensorPowerModePowerDown is requested.

• Req 3.7 The set_power_mode function must allow SensorPowerModeLowPowerActive if
SensorPowerModeActive is requested for BSX_INPUT_ID_MAGNETICFIELD, BSX_INPUT_ID_ACCELERATION,
and BSX_INPUT_ID_ANGULARRATE.

• Req 3.8 The set_power_mode function may select SensorPowerModeLowPowerActive or
SensorPowerModeActive if SensorPowerModeLowPowerActive is requested and implemented.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 44 | 65

• Req 3.9 The set_power_mode function should implement SensorPowerModeInterruptMotion for
BSX_INPUT_ID_ACCELERATION.

• Req 3.10 The set_power_mode function must allow SensorPowerModeOneShot if
SensorPowerModeLowPowerActive and SensorPowerModeActive are not allowed.

• Req 3.11 The sensor must transition from SensorPowerModeOneShot to SensorPowerModeSuspend or
SensorPowerModePowerDown after the sample data was received when in SensorPowerModeOneShot.

• Req 3.12 The set_power_mode function must allow SensorPowerModeLowPowerActive and
SensorPowerModeActive if SensorPowerModeOneShot is not allowed.

• Req 3.13 The set_power_mode function must allow SensorPowerModeLowPowerActive if
SensorPowerModeActive is allowed.

• Req 3.14 The set_power_mode function must not modify the power mode of any other sensor driver.
• Req 3.15 A transition from SensorPowerModePowerDown to any other power state must complete within 1000 ms.
• Req 3.16 A transition from SensorPowerModeSuspend to any higher power state must complete within 100 ms.
• Req 3.17 The set_power_mode function must transition from SensorPowerModeSelfTest to
SensorPowerModeSuspend or SensorPowerModePowerDown after a self-test has completed.

• Req 3.18 The set_power_mode function must call reportSelfTestResult after the sensor has transitioned from
SensorPowerModeSelfTest to SensorPowerModeSuspend or SensorPowerModePowerDown.

• Req 3.19 The set_power_mode function must call sensorPowerModeChanged after the sensor has transitioned to
the requested power.

• Req 3.20 The set_power_mode function must ensure that set_sample_rate is called if a sample rate transition
is needed by the driver when transitioning from any active power mode to another active power mode.

• Req 4.1 The set_sample_rate function must be implemented if the sensor supports
SensorPowerModeLowPowerActive or SensorPowerModeActive.

• Req 4.2 The set_sample_rate function must place the sensor in the maximum sample rate supported when a
value of 0xFFFF is specified.

• Req 4.3 The set_sample_rate function must place the sensor in the lowest non-zero sample rate supported
when a value of 1 is specified.

• Req 4.4 The set_sample_rate function must return the actual sample rate selected by the sensor driver.
• Req 4.5 The set_sample_rate function must select the requested sample rate or higher, if possible.
• Req 4.6 The set_sample_rate function must not lower the sample rate of another sensor driver.
• Req 4.7 The set_sample_rate function should not increase the sample rate of another sensor driver unless the

drivers are composites.
• Req 4.8 The set_sample_rate function must call sensorRateChanged after the desired sample rate has been

set.
• Req 4.9 The set_sample_rate function must have the maxRate value set to the maximum rate supported by

the sensor.
• Req 4.10 The set_sample_rate function should enforce rates as a power of two decimation from the max rate.
• Req 4.11 The set_sample_rate function must select a requested rate, if possible.

• Req 5.1 The set_dynamic_range function must be implemented for BSX_INPUT_ID_ACCELERATION and
BSX_INPUT_ID_ANGULARRATE.

• Req 5.2 The set_dynamic_range function should support a range of +/- 16G for
BSX_INPUT_ID_ACCELERATION.

• Req 5.3 The set_dynamic_range function should support a range of +/- 2000dps for
BSX_INPUT_ID_ANGULARRATE.

• Req 5.4 The set_dynamic_range function must return the actual dynamic range selected by the driver.
• Req 5.5 The set_dynamic_range function must call sensorRangeChanged after the dynamic range has been

set.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 45 | 65

• Req 6.1 The get_dynamic_range function must be implemented for all sensor types.
• Req 6.2 The get_dynamic_range function must return the actual dynamic range for the sensors.

• Req 7.1 The enable_interrupts function must be implemented for all sensors.
• Req 7.2 The enable_interrupts function must be called before sensor data is transferred from the sensor.
• Req 7.3 The enable_interrupts function must not affect the interrupt status of another sensor.

• Req 8.1 The disable_interrupts function must be implemented for all sensors.
• Req 8.2 The disable_interrupts function must stop sensor data from being transferred from the sensor.
• Req 8.3 The disable_interrupts function must not affect the interrupt status of another sensor.
• Req 8.4 The int_enabled variable must be set if data is being transferred from the sensor.

• Req 9.1 The get_power_mode function must be implemented for all sensors.
• Req 9.2 The get_power_mode function must return the power mode of the driver.

• Req 10.1 The get_sample_rate function must be implemented if the sensor supports
SensorPowerModeLowPowerActive or SensorPowerModeActive.

• Req 10.2 The get_sample_rate function must return the selected sample rate of the driver.

• Req 11.1 The get_scale_factor function must be implemented for BSX_INPUT_ID_MAGNETICFIELD,
BSX_INPUT_ID_ACCELERATION, BSX_INPUT_ID_ANGULARRATE, BSX_INPUT_ID_PRESSURE,
BSX_INPUT_ID_HUMIDITY, and BSX_INPUT_ID_TEMPERATURE.

• Req 11.2 The get_scale_factor function must return floating point scale factor to convert the sensor data into
the correct units.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 46 | 65

4.8 Example virtual sensor drivers

4.8.1 Continuous virtual sensor

The following example virtual driver is a simple continuous driver which consumes data directly from a physical driver.

Figure 15: Continuous Virtual Sensor – Header

//
////////
///
/// @file VirtPhysicalOutput.c
///
/// @project EM7189
///
/// @brief Example driver used to report physical sensor data to the
host.
///
/// @classification Confidential
///
//
////////
#include <SensorAPI.h>
#include <host.h>
#include "VirtPhysicalOutput.h"
#include <arc.h>
#include <FreeRTOS.h>

#define SENSOR_INPUT BSX_INPUT_ID_ACCELERATION /* Physical sensor to
use for trigger source */
#define SENSOR_OUTPUT BSX_OUTPUT_ID_ACCELERATION_RAW /* Host output type
*/

typedef struct {
 SInt16 x;
 SInt16 y;
 SInt16 z;
} __attribute__ ((packed)) output_t;

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 47 | 65

Figure 16: Continuous Virtual Sensor – Handle_Sensor_Data

static SensorStatus handle_sensor_data(VirtualSensorDescriptor* self,
void* data)
{
 output_t output;
 PhysicalSensorDescriptor* parent =
cast_HeaderToPhysical(getSensorParent(cast_VirtualToHeader(self)));

 float scaleAdjustment = self->expansionData.f32;
 float dynamicRange = getDynamicRange(cast_PhysicalToHeader(parent));
 // Scale to dynamic range, 16bit signed output
 float scaleFactor =
 parent->get_scale_factor(parent) * scaleAdjustment * (float)MAX_SINT16
/ dynamicRange;
 SystemTime_t timestamp = self->timestamp;
 SInt32* sendata = data;
 SInt32 xi, yi, zi;
 float x, y, z;

 portDISABLE_INTERRUPTS();

 xi = sendata[0];
 yi = sendata[1];
 zi = sendata[2];

 portENABLE_INTERRUPTS();

 x = xi * scaleFactor;
 y = yi * scaleFactor;
 z = zi * scaleFactor;

 x = SATURATE(MAX_SINT16, x, MIN_SINT16);
 y = SATURATE(MAX_SINT16, y, MIN_SINT16);
 z = SATURATE(MAX_SINT16, z, MIN_SINT16);

 output.x = (SInt16)x;
 output.y = (SInt16)y;
 output.z = (SInt16)z;

 reportSensorEvent(self, &output, timestamp);

 return SensorOK;
}

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 48 | 65

Figure 17: Continuous Virtual Sensor – Virtual Sensor Descriptor

4.8.2 On-change virtual sensor

The following example shows the changes that are required to change a continuous virtual driver to an on-change driver.
The key points for writing an on-change driver are to set the sensor descriptor to specify a type of on_change and ensure
the get_last_sensor_data function is implemented. In the handle_sensor_data function, the data should only be

VIRTUAL_SENSOR_DESCRIPTOR VirtualSensorDescriptor DESCRIPTOR_NAME = {
 .triggerSource = {
 .sensor = {
 .type = {
 .value = SENSOR_INPUT,
 .flags = DRIVER_TYPE_PHYSICAL_FLAG,
 },
 },
 },

 .physicalSource = {
 .sensor ={
 .type = {
 .value = SENSOR_INPUT,
 .flags = DRIVER_TYPE_PHYSICAL_FLAG,
 },
 },
 },

 .info = {
 .id = DRIVER_ID,
 .version = DRIVER_REV,
 },

 .type = {
 .value = SENSOR_TYPE_BSX(SENSOR_OUTPUT),
 .flags = DRIVER_TYPE_VIRTUAL_FLAG,
 .wakeup_ap = FALSE,
 },

 .expansionData = {
 .f32 = SCALE_FACTOR,
 },

 .priority = PRIORITY_2, // high priority

 .handle_sensor_data = handle_sensor_data,
 .outputPacketSize = sizeof(output_t),
};

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 49 | 65

sent if the data has changed. When reporting a sensor event in get_last_sensor_data, the timestamp of the previous
data sample should be used.

Figure 18: On-Change Virtual Sensor

4.8.3 One-shot virtual sensor

The following example shows the changes that are required to change an on-change virtual driver to a one-shot driver. The
key points for writing a one-shot driver are to update the driver to disable itself after an event is thrown, and make sure the
driver does not throw an event when turned on. These changes should be made in addition to the changes required for an
on-change sensor driver.

// Implement the get_last_sensor_data function for an on-change driver
static SensorStatus virt_get_last_sensor_data(VirtualSensorDescriptor*
self)
{
 /* Use the (saved) timestamp from the previous sample sent in
 handle_sensor_data */
 reportSensorEvent(self, &output, timestamp);
 return SensorOK;
}

VIRTUAL_SENSOR_DESCRIPTOR VirtualSensorDescriptor DESCRIPTOR_NAME = {

 /* All other values are the same as the continuous virtual sensor
*/

 .type = {
 .value = SENSOR_TYPE_BSX(SENSOR_OUTPUT),
 .flags = DRIVER_TYPE_VIRTUAL_FLAG,
 .wakeup_ap = TRUE, // Change required for on-change driver
 .on_change = TRUE, // Change required for on-change driver
 },

 .handle_sensor_data = handle_sensor_data,
 .get_last_sensor_data = virt_get_last_sensor_data, /* Change required
for on-change driver */
};

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 50 | 65

Figure 19: One-Shot Virtual Sensor

4.9 Programming custom code extensions

4.9.1 Overview

On the BHy2 custom code extensions are implemented as hooks. The hook functionality in the BHy2 is a special mechanism
which provides calling of multiple definitions of sensor interface hook functions at defined locations in the firmware according
to priority level. When each main hook function is called by the firmware, all registered hook functions of that type are also
executed. The supported hook types are summarized in Table 23 below.

The flow of hooks called during the start of execution is shown in Figure 20.

Table 23: Supported Hook Types
Hook type Return type Additional parameters Notes
Procedures called during start and stop of execution

initOnce void None
Called during start of execution,
following hardware initialization. One
time initialization code should be
placed in this function.

exitShutdow
n void None

Called during start of execution,
following host interface initialization.
Initialization code should be placed
in this function.

initialize void None

Called during start of execution,
following host interface and sensor
initialization. Initialization code
should be placed in this function.

teardown void None

Called during stop of execution
events following an initialization
error. The BHy2 stops operation of
all sensors. The user should ensure
that custom code (such as a timer
call-back) is disabled at this point.

Procedures tied to sensor interface

PhysicalRat
e void PhysicalSensorDescriptor*

phys, float* rate

Called any time a rate for a physical
sensor driver is requested. The hook
can overwrite the physical sensor’s
rate by writing a new value to the
*rate parameter.

static SensorStatus handle_sensor_data(VirtualSensorDescriptor* self,
void* data)
{
 output_t output;

 // Perform all required operations to calculate the output values

 reportSensorEvent(self, &output, timestamp);
 updateRequestedRate(cast_VirtualToHeader(self), 0.0F); // Change
required for one-shot driver

 return SensorOK;
}

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 51 | 65

Hook type Return type Additional parameters Notes

TimerRate void
VirtualSensorDescriptor*
timer, float* rate

Called any time a rate for a physical
sensor driver is required. The hook
can overwrite the sensor’s timer rate
by writing a new value to the *rate
parameter.

PhysicalRat
e
Changed

void PhysicalSensorDescriptor*
phys, float rate

Called any time a rate for a physical
sensor driver has changed. Used to
notify listeners that a physical sensor
driver rate has changed.

PhysicalRan
ge
Changed

void PhysicalSensorDescriptor*
phys, UInt16 range

Called any time the dynamic range
for a physical sensor driver has
changed. Used to notify listeners
that physical sensor driver range has
changed.

VirtualSens
ors
Determined

void None

Called during checking of sensor
state changes. Used to notify the
listener that the framework has
determined which sensors should be
enabled. The hook can override or
add additional requests here by
setting the info.status.enabled
bit in the desired sensor descriptor.

OverrideMax
Rate

void SensorDescriptorHeader*
sensor, float* rate

Called during checking of sensor
state changes. The hook can
overwrite the maximal rate allowed
for a given sensor by writing a new
value to the *rate parameter.

updatePhysi
cal
State

void PhysicalSensorDescriptor*
phys

Called during sensor state changes.
Notifies the user that the custom-
controller sensor state changes
should be done now.

determinePo
wer
State

Sensor
Power
Mode

PhysicalSensorDescriptor*
phys

Called during sensor state changes.
The default power mode can be
overwritten by returning the desired
power mode from the hook.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 52 | 65

Figure 20: Hooks Called During Initialization

4.9.2 Hook implementation

Sensor interface hook functions are defined and registered with the base firmware using the HOOK macro.

Figure 21: Definition of Hook Function

The HOOK macro takes a number of arguments listed below:

• __hook__ - The hook type to register
• __function__ - The function to declare and register as a hook client
• __priority__ - The priority of the hook, ranging from HOOK_PRIORITY_MAX (1) to HOOK_PRIORITY_MIN (10)
• __return__ - The return type of the hook, specific to each hook type, see Table 23 Return Type column
• … - Remaining arguments for the hook specific to each hook type, see Table 23 Additional Parameters column

New source files containing hook implementations can be added to the $SDK/user/RamPatches directory. Any new files in
the $SDK/user/RamPatches directory should be added to the RAM_PATCHES variable in the CMake config file in the
$SDK/common directory.

Initialize Firmware
•Enable RAM Banks
•Register sensor descriptors
•Configure stack
•Set up I2C and SPI queues

Initialize Hardware
•Configure pulls
•Configure and enable

interrupts

Initialize Sensor Interfaces
•Parse sensor drivers (form

trigger lists)
•Configure SIFs

HOOK initOnce

Initialize Host Interface

HOOK exitShutdown

Initialize Sensors
•Install interrupt handlers, set

edge and priority
•Call sensor initialize functions

HOOK initialize

Start RTOS/main loop

HOOK(__hook__, __function__, __priority__, __return__, ...)
{
 /* Function definition here */
}

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 53 | 65

4.9.3 Hook priority level

Execution of hooks is ordered by priority level from HOOK_PRIORITY_MAX (1) to HOOK_PRIORITY_MIN (10).

Figure 22: Hook Priorities

All kernel-level hooks of a given type will run to completion before any user-level hooks are executed. When two or more
user-level hook functions with the same priority level are used, the order of their execution is unpredictable (it depends on
internal sorting). For this reason, utilization of different priority levels is recommended.

4.9.4 Stopping hook execution

In some cases, execution of the rest of chained hook functions must be stopped to save execution time or due to a condition
in the code. To achieve this, there is an extra parameter (bool* stopHookExecution) included by the HOOK macro for
each hook function. Any defined hook function can set stopHookExecution to TRUE to stop execution of the rest of the
registered hooks of the same type and lower priority. For detailed information, please, see section 4.8.6 that provides
examples of hook usage.

4.9.5 Accessing data from hooks

Raw sensor data can be accessed by looking up the physical sensor using the getPhysicalSensorDescriptorByType
or getSensorSource functions. Once the physical sensor descriptor has been located, the descriptor->sensorData
variable can be used to access the raw sensor data. Note that interrupts must be disabled to make the reading of these data
structures atomic.

4.9.6 Usage

This section contains two custom hook definition examples.

4.9.6.1 Hook example 1

The following hook example defines myNewVSDHook as a VirtualSensorsDetermined type hook. It has the lowest
priority and will execute after all higher priority VirtualSensorsDetermined hooks.

Figure 23: Hook Example 1

// Hook priority definition
#define HOOK_PRIORITY_MAX 1
#define HOOK_PRIORITY_MIN 10

#include <hooks_support.h>

HOOK(VirtualSensorsDetermined, myNewVSDHook, HOOK_PRIORITY_MIN, void)
{
 UNUSED(stopHookExecution);
 /* do something useful */
}

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 54 | 65

4.9.6.2 Hook example 2

The following hook example defines myNewPRHook as a PhysicalRate type hook. Because this hook sets
stopHookExecution to TRUE, all other PhysicalRate user mode hooks with a priority lower than 5 will not be
executed.

Figure 24: Hook Example 2

4.10 Programming custom user mode libraries

Users can implement custom libraries into the SDK and call library functions within custom user image code, such as
virtual sensors or hooks.

The following steps have to be executed to compile a library into user image:

1) Create a folder in $SDK/libs, containing:
a) <name>.c source file(s) (names don't have to match the folder name, but need to be provided in CMakeLists.txt)
b) CMakeLists.txt file, see example below (names are chosen arbitrarily)
c) includes/<name>.h header file(s) exposing function prototypes and constants (names don't have to match the

folder name, the directory including them has to be provided in CMakeLists.txt)
2) In /common/config.<dist_type>.cmake:

a) Add library name (folder name) to the LIBRARIES variable
b) Add library name (folder name) to BOARDS_LIBS variable

Figure 25: CMakeLists.txt Example

To use the library functions and data from inside custom user image code, the header files exposing these functions have
to be included within the respective .c files. In order to avoid having to use the full path to the library from the root directory,
users can add the path to the library to the include_directories variable of the CMakeLists.txt file of the calling
component.

HOOK(PhysicalRate, myNewPRHook, 5, void,
 PhysicalSensorDescriptor* phys, float* rate)
{
 /* do something useful */

 // stop execution of the rest of chained hooks
 *stopHookExecution = TRUE;
}

get_filename_component(proj ${CMAKE_CURRENT_LIST_DIR}NAME)

project(${proj} C)

set(SOURCES
 customlib.c
)

include_directories(
 ../../libs/customlib/includes/
)

ADD_C_FLAGS(-DNO_JLI_CALLS)

ADD_ARC_LIBRARY(${proj}${SOURCES})

EXPORT_ARC_LIBRARY(${proj})

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 55 | 65

4.11 Using custom parameters

The primary control channel for configuring and querying the state of the system is done using parameter reads and writes.
Current parameter use is summarized in Table 24. When sending a parameter request to the firmware, the upper byte is
composed of a 0 (set) or 1 (get) in the upper nibble and the parameter page in the lower nibble. The second byte indicates
the parameter number. More details on current parameters can be found in section 14 of the BHI260AB/BHA260AB
Datasheet, Reference 1 and Reference 2.

Table 24: Parameters

Parameter Page Parameter
Command Range Description

System (1) 0x0100 – 0x01FF
Meta Event Control, FIFO Control, Firmware
Version, Timestamps, Framework Status,
Virtual Sensors Present, Physical Sensors
Present, Physical Sensor Information

Algorithm (2) 0x0200 – 0x02FF Calibration state for physical sensors

Sensor Information (3) 0x0300 – 0x03FF
Sensor Information structure, including sensor
type, driver ID, driver version, power, max
range, min/max rate, and others. Read-only

Sensor Configuration (5) 0x0500 – 0x05FF
Sensor configuration parameters, including
sample rate, maximum report latency, change
sensitivity, and dynamic range. Read-only

Custom Parameter 1 (9) 0x0900 – 0x09FF Available for custom use in the BHI260AB. May
be used in other variants.

Custom Parameter 2 (10) 0x0A00 – 0x0AFF Available for custom use in the BHI260AB. May
be used in other variants.

Custom Parameter 3 (11) 0x0B00 – 0x0BFF Available for custom use in the BHI260AB. May
be used in other variants.

Custom Parameter 4 (12) 0x0C00 – 0x0CFF Available for custom use

Sensor Control (14) 0x0E00 – 0x0EFF Sensor specific control information, including
FOC, OIS, and FST

This section describes how users can create their own custom parameters. Parameter pages 9 – 12 can be used to create
custom parameters. Parameter numbers 1-255 are available for custom use within those pages. Parameter number 0 is
reserved.

Note that parameter reads and writes should be used for infrequent control changes and infrequent data output. It is not
recommended for high speed (> 1 Hz) sensor data output.

4.11.1 Initialization

Custom code must register the read and write callbacks for custom parameters by calling registerReadParamHandler
and registerWriteParamHandler and passing in the handled parameter page and handler function. This can be done
in an initOnce hook type. See Figure 26 for an example which registers new handlers for custom parameter page 9. After
the parameter read and write handlers are registered, the firmware will route host requests for the custom parameters to the
custom handlers appropriately.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 56 | 65

Figure 26: Parameter Page Read and Write Callback Registration

4.11.2 Parameter read handler

Custom code may implement a parameter read handler which copies the parameter data to the passed in buffer which is
then returned to the host. As this function blocks much of the system, it is important that the data is copied to the buffer and
returns quickly. Figure 27 includes an example for a parameter read handler.

Figure 27: Parameter Read Callback

4.11.3 Parameter write handler

Custom code may implement a parameter write handler which saves the host data into the stored parameter values. As this
function blocks much of the system, it is important that the data is copied from the buffer and returns quickly. See Figure 28
for an example.

#include <SensorAPI.h>
#define MY_PARAM_PAGE 9
extern bool myReadHandler(UInt8 param, UInt16 length, UInt8 buffer[],
 UInt16 *ret_length);
extern bool myWriteHandler(UInt8 param, UInt16 length, UInt8
buffer[]);

HOOK(initOnce, myInitOnceHook, HOOK_PRIORITY_RAM, void)
{
 registerReadParamHandler(MY_PARAM_PAGE, myReadHandler);
 registerWriteParamHandler(MY_PARAM_PAGE, myWriteHandler);
}

bool myReadHandler(UInt8 param, UInt16 length, UInt8 buffer[], UInt16
*ret_length)
{
 // Save data from my code to host.
 switch(param)
 {
 case MY_PARAM:
 union {
 UInt8 *buffer;
 data_t *my_data;
 } conv;
 conv.buffer = buffer;
 // copy my_data fields into buffer here
 …
 *ret_length = sizeof(data_t);
 break;
 default:
 return FALSE; // unhandled parameter – indicate error to host
 }
 return TRUE;
}

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 57 | 65

Figure 28: Parameter Write Callback

4.12 Using general-purpose host registers

The BHy2 contains a fixed set of GPIO registers which can be used for communication between the firmware and the host.

In general, it is proposed to use the parameter interface or the sensor event concept for host communication, however, for
some use cases a set of registers which is accessible both from the host and the firmware is sometimes easier to handle,
since it carries a minimum overhead.

There is a register space of 12 bytes writeable by the host, and accessible read-only by the firmware, and another register
space of 12 bytes writable by the firmware, and read-only accessible from the host.

API functions are available in hif.h for reading and writing these GPIO registers.

The HOST registers should be read using the safeRead8, safeRead16, or safeRead32 API functions, passing in the
address of the register to be read (e.g. safeRead8(&HOST.Gp1.r8[0])).

Table 25: Available GPIO Registers for Communication with Host

GPIO Register I2C Register
Address

Access
Type

Host Access
Type Note

HOST.Gp1.r8[0] 0x08 RO RW

General
purpose input
registers

HOST.Gp1.r8[1] 0x09 RO RW

HOST.Gp1.r8[2] 0x0A RO RW

HOST.Gp1.r8[3] 0x0B RO RW

HOST.Gp2.r8[0] 0x0C RO RW

HOST.Gp2.r8[1] 0x0D RO RW

HOST.Gp2.r8[2] 0x0E RO RW

HOST.Gp2.r8[3] 0x0F RO RW

HOST.Gp3.r8[0] 0x10 RO RW

HOST.Gp3.r8[1] 0x11 RO RW

HOST.Gp3.r8[2] 0x12 RO RW

HOST.Gp3.r8[3] 0x13 RO RW

PROC.Gp5.r8[0] 0x32 RW RO

bool myWriteHandler(UInt8 param, UInt16 length, UInt8 buffer[])
{
 // Save data from host
 switch(param)
 {
 case MY_PARAM:
 // copy length bytes of data from buffer into my_data here
 …
 break;
 default:
 return FALSE; // unhandled parameter – indicate error to host
 }
 return TRUE;
}

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 58 | 65

GPIO Register I2C Register
Address

Access
Type

Host Access
Type Note

PROC.Gp5.r8[1] 0x33 RW RO

General
purpose output
registers

PROC.Gp5.r8[2] 0x34 RW RO

PROC.Gp5.r8[3] 0x35 RW RO

PROC.Gp6.r8[0] 0x36 RW RO

PROC.Gp6.r8[1] 0x37 RW RO

PROC.Gp6.r8[2] 0x38 RW RO

PROC.Gp6.r8[3] 0x39 RW RO

PROC.Gp7.r8[0] 0x3A RW RO

PROC.Gp7.r8[1] 0x3B RW RO

PROC.Gp7.r8[2] 0x3C RW RO

PROC.Gp7.r8[3] 0x3D RW RO

The access to these registers is performed asynchronously. The user has to take care that race conditions are avoided. E.g.,
when the firmware updates multiple output registers with a single 32-bit write while the host reads these register sequentially,
some of the values read by the host may be updated, while others still have the old value.

4.13 Watchdog configuration

The watchdog timeout can be disabled, configured, enabled, and cleared using the APIs defined in
$SDK/common/7189/includes/watchdog.h. The watchdog must be disabled before configuring the timeout. Example code to
set the watchdog limit is shown in Figure 29.

Figure 29. Setting the Watchdog Limit

4.14 Firmware debugging

4.14.1 Debug message

For debugging a sensor driver the fwrite, puts, and putchar functions are available to store a message in the status
FIFO buffer which can subsequently be read by the host. In addition the printf library is provided by stdio from MetaWare
and can be enabled in order to have the capability to write an arbitrary string to the host.

Debug output is buffered in a 16-byte buffer. This buffer is sent to the host when full or when one of the debug functions
output a linefeed. The host can cause a partial transfer to be sent by issuing a FIFO Flush command with the flush value set
to FLUSH ALL.

As adding the printf library adds code space and all of these functions can dramatically affect timing, it is highly
recommended that they are only used as a last resort and not included in production code.

// Set the watchdog limit to 10 ms
DisableWatchdog();
SetWatchdogLimit(getSYSOSCFrequency() * 10); // 10 ms
EnableWatchdogInterrupt();

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 59 | 65

4.14.2 Post mortem data

When a fatal error occurs due to either a processor exception, watchdog timeout, or an unrecoverable firmware error, the
firmware saves the processor state of the BHy2 including the base registers, relevant auxiliary registers, and the stack. This
debug data can be retrieved using the Download Post Mortem Data command. In response to this command the firmware
will send the Crash Dump status block to the status FIFO.

See section 5 of the BHI260AB/BHA260 datasheets, Reference 1 and Reference 2, for more information on the download
Post Mortem host command and Crash Dump Status Packet.

The backtrace tool in the SDK can be used to analyze the Crash Dump Status Packet.

4.14.2.1 Backtrace Utility

A backtrace utility is provided in the SDK to assist in decoding crash dump data. This utility is built during the normal build
process and will be located in the $SDK/build/bin directory after completing a firmware build. After collecting the binary
crash dump data, backtrace can be run to parse the data, as shown in Figure 30. kernel_debug.elf and kernel-
flash_debug.elf are debug kernel elf files that include a small number of critical symbols from the ROM and kernel images
to provide more information when decoding the crash dump data. These files are included in the SDK in the $SDK/kernel
directory.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 60 | 65

Figure 30 : Backtrace Utility

4.14.3 Current system time

The current system time can be determined by calling the getSystemTime function provided by the Timer library (prototype
in $SDK/libs/Time/includes/Timer.h).

> backtrace pm.bin kernel_debug.elf [user.elf]
...
 r0 0x00128001
 r1 0x00a12e40
 r2 0x00136554
 r3 0x00a091c0
...
 gp r26 0x00a05c1c
 fp r27 0x00a11850
 sp r28 0x00a117f8
ilink r29 0x00124d5c (null)
 r30 0x30303030
blink r31 0x0013655c bmi160_accel_set_sample_rate_report_always
 pc 0x001029f2 NullHandler
 eret 0x001364c8 bmi160_accel_set_sample_rate
 erbta 0x001364b4 bmi160_accel_set_sample_rate
 erstatus 0x8000481e
 ecr 0x00020000
 efa 0x001364c8
 icause 0x00000000
 mpu_ecr 0x00000000

 diag 0x00000002
debug state 0x000000b2
 debug val 0x00000000
 error val 0x00000000
 interrupt 0x00000000
 err report 0x00000044

 stack start 0x00a05c1c
stack pointer 0x00a117f8
 stack size 0x00001000
 reset reason 0x00000004

 stack CRC 0xddd70c3f
 CRC 0x1aa74558

0x001029F2: NullHandler
 <r0>=0x00128001, <r1>=0x00a12e40, <r2>=0x00136554, <r3>=0x00a091c0,
 <r4>=0x00000000, <r5>=0x00a12e40, <r6>=0x00000000, <r7>=0x0000000f,
 <r8>=0x0000003f, <r9>=0x00a117bb, <r10>=0x10101010, <r11>=0x00000001,
 <r12>=0x00000001, <r13>=0x00a127f0, <r14>=0x00000004, <r15>=0x00a12ed4,
 <r16>=0x42c80000, <r17>=0x00a12e40, <r18>=0x00000008, <r19>=0x00000000,
 <r20>=0x00a12b40, <r21>=0x21212121, <r22>=0x22222222, <r23>=0x23232323,
 <r24>=0x24242424, <r25>=0x25252525, <r26>=0x00a05c1c, <r27>=0x00a11850,
 <sp>=0x00a117f8, <ilink>=0x00124d5c, <r30>=0x30303030, <blink>=0x0013655c

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 61 | 65

4.14.4 Monitoring stack usage

The optional kernel firmware image RAM patch is available which reports stack space and usage. By default this RAM patch
is included in the kernel firmware image.

After loading RAM/Flash firmware, stack information including task name, total stack size, and free/unused stack size is
available by reading parameter ID 0x0110. See Figure 31 for an example.

Figure 31 : Stack Usage Report

 Stack Info
0x00: Task Name : Idle
0x08: Total Stack Size : 0x000007E8 (2024)
0x0C: Free Stack Size : 0x00000694 (1684)
0x10: Task Name : 4Virt
0x18: Total Stack Size : 0x000009E8 (2536)
0x1C: Free Stack Size : 0x0000091C (2332)
0x20: Task Name : 3Virt
0x28: Total Stack Size : 0x000009E8 (2536)
0x2C: Free Stack Size : 0x000005F8 (1528)
0x30: Task Name : 2Virt
0x38: Total Stack Size : 0x000009E8 (2536)
0x3C: Free Stack Size : 0x0000091C (2332)
0x40: Task Name : Sensor
0x48: Total Stack Size : 0x000009E8 (2536)
0x4C: Free Stack Size : 0x00000710 (1808)
0x50: Task Name : Host
0x58: Total Stack Size : 0x00000BE8 (3048)
0x5C: Free Stack Size : 0x00000A44 (2628)
0x60: Task Name : CalibBSX
0x68: Total Stack Size : 0x000017E8 (6120)
0x6C: Free Stack Size : 0x00001570 (5488)

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 62 | 65

5 References
Reference 1: BHI260AB Datasheet (BST-BHI260AB-DS000)

Reference 2: BHA260AB Datasheet (BST-BHA260AB-DS000)

Reference 3: Synopsys MetaWare Website https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware

Reference 4: Synopsys Github FOSS Toolchain for ARC® processors Website https://github.com/foss-for-synopsys-dwc-
arc-processors/toolchain/releases

https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 63 | 65

6 Legal disclaimer

6.1 Engineering samples

Engineering Samples are marked with an asterisk (*) or (e) or (E). Samples may vary from the valid technical specifications
of the product series contained in this document. They are therefore not intended or fit for resale to third parties or for use in
end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the
testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall
indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

6.2 Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters
of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems are
those for which a malfunction is expected to lead to bodily harm, death or severe property damage. In addition, they shall
not be used directly or indirectly for military purposes (including but not limited to nuclear, chemical or biological
proliferation of weapons or development of missile technology), nuclear power, deep sea or space applications (including
but not limited to satellite technology).

The resale and/or use of Bosch Sensortec products are at the purchaser’s own risk and his own responsibility. The
examination of fitness for the intended use is the sole responsibility of the purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by the
parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in
connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to product
safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

6.3 Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the
application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without
limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given
in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for
illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding
functionality, performance or error has been made.

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 64 | 65

7 Trademark notice
ARC® is a registered trademark of Synopsys Inc.

8 Document history and modifications

Rev. No Chapter Description of modification/changes Date
1.4 All Main release 2020-02-04

1.5 3, 4 Fixed typos and added missing descriptions 2020-05-28

 Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI260-AN002-03 Revision_1.5_052020

Bosch Sensortec | BHI260AB-BHA260AB Programmer’s Manual 65 | 65

Bosch Sensortec GmbH
Gerhard-Kindler-Straße 9
72770 Reutlingen / Germany

www.bosch-sensortec.com

Modifications reserved
Preliminary - specifications subject to change without notice
Document number: BST-BHI260AB-AN002-03
Revision: 1.5

http://www.bosch-sensortec.com/

	List of Figures
	List of Tables
	General description
	1 Prerequisites and installation
	1.1 Compiler toolchains
	1.1.1 Obtaining and installing the Synopsys MetaWare C compiler
	1.1.1.1 Linux
	1.1.1.2 Windows

	1.1.2 Obtaining and installing the GNU C compiler for BHI260AB/BHA260AB
	1.1.2.1 Linux
	1.1.2.2 Windows

	1.2 Software Development Kit for BHI260AB/BHA260AB
	1.2.1 Linux
	1.2.2 Windows

	2 SDK structure and features
	2.1 SDK and firmware structure
	2.1.1 Overview of SDK structure
	2.1.2 Overview of firmware structure
	2.1.2.1 Kernel Mode and User Mode RAM Images

	2.1.3 Available memory resources for custom Code

	2.2 Firmware configuration (using board configuration file)
	2.2.1 Global configuration
	2.2.2 Physical drivers
	2.2.3 Virtual drivers

	2.3 Build system and build targets
	2.3.1 Compiling firmware
	2.3.1.1 Setting environment for compilation
	2.3.1.2 Firmware generation for supported boards

	2.3.2 Configuring the firmware build (using the main CMake file)
	2.3.3 Selecting the toolchain

	3 BHy2 driver architecture
	3.1 General flow of data

	4 Software development for BHI260AB/BHA260AB using the software framework
	4.1 Sensor driver overview
	4.1.1 Sensor driver types
	4.1.1.1 Physical sensors
	4.1.1.2 Virtual sensors
	4.1.1.3 Timer sensors

	4.1.2 Predefined sensors
	4.1.2.1 Physical sensor types
	4.1.2.2 Virtual sensor types
	4.1.2.3 User provided physical sensor types
	4.1.2.4 User provided virtual sensor types

	4.1.3 Sensor priority level
	4.1.4 Sensor trigger chaining
	4.1.5 Driver hang detection

	4.2 Drivers directory structure
	4.3 Driver CMakeLists.txt file
	4.4 Checking for existing Driver IDs
	4.5 Writing driver code
	4.5.1 Recommended include files
	4.5.2 Sensor communication support
	4.5.2.1 Sensor communication APIs
	4.5.2.2 Sensor communication best practices

	4.5.3 Sensor descriptor structure
	4.5.3.1 Sensor descriptor header
	4.5.3.2 Physical sensor descriptor fields
	4.5.3.3 Virtual/timer sensor descriptor fields

	4.5.4 Sensor driver functions
	4.5.4.1 Sensor State and Parameter Setting Functions
	4.5.4.2 Sensor state and parameter query functions
	4.5.4.3 Sensor data handling functions
	4.5.4.4 Virtual sensor data handling functions

	4.5.5 Using custom sensor IDs to send data to the host
	4.5.6 Connection between Driver ID and Sensor ID
	4.5.7 Virtual sensor host interface
	4.5.8 Handling special cases

	4.6 Sensor data injection drivers
	4.6.1 Initialization
	4.6.2 Set sample rate
	4.6.3 Get sample data
	4.6.4 Other required sensor functions
	4.6.5 Driver config file and custom board file

	4.7 Driver coding requirements
	4.8 Example virtual sensor drivers
	4.8.1 Continuous virtual sensor
	4.8.2 On-change virtual sensor
	4.8.3 One-shot virtual sensor

	4.9 Programming custom code extensions
	4.9.1 Overview
	4.9.2 Hook implementation
	4.9.3 Hook priority level
	4.9.4 Stopping hook execution
	4.9.5 Accessing data from hooks
	4.9.6 Usage
	4.9.6.1 Hook example 1
	4.9.6.2 Hook example 2

	4.10 Programming custom user mode libraries
	4.11 Using custom parameters
	4.11.1 Initialization
	4.11.2 Parameter read handler
	4.11.3 Parameter write handler

	4.12 Using general-purpose host registers
	4.13 Watchdog configuration
	4.14 Firmware debugging
	4.14.1 Debug message
	4.14.2 Post mortem data
	4.14.2.1 Backtrace Utility

	4.14.3 Current system time
	4.14.4 Monitoring stack usage

	5 References
	6 Legal disclaimer
	6.1 Engineering samples
	6.2 Product use
	6.3 Application examples and hints

	7 Trademark notice
	8 Document history and modifications

