&) BOSCH

BHI360 BHI380
Ultra-low power, high performance, programmable
Smart Sensor with integrated IMU

BHI360/BHI380 SDK Quick Start Guide

Document revision 1.5
Document release date April 18, 2023
Document number BST-BHI360_BHI380-AN000-05

Technical reference code(s) 0273 141 367 0273141 392

Notes Data and descriptions in this document are subject to change without
notice. Product photos and pictures are for illustration purposes only
and may differ from the real product appearance.

Table of Contents

1 Introduction to the SDK

2 Setup in Windows

2.1 Installing the compiler and support tools

2.2 Installing the SDK

o o O O

2.3 Importing the SDK into Eclipse

3 Setup in Linux

3.1 Installing the ARC GNU toolchain and support tools

3.2 Installing the SDK in Linux

4 Building the SDK and loading firmware into the BHI360 (BHI380)

5 Adding a BSX based new custom virtual driver

5.1 Driver directory structure
5.2 Writing driver code

5.3 Selecting a driver ID

5.4 Driver CMakelLists.txt File

5.5 Brief introduction to the board configuration file

5.6 Modifying the board configuration file

5.7 Brief introduction to the SDK configuration file
5.8 Modifying the SDK configuration file

5.9 Building the custom firmware

5.10 Lean orientation example

6 Adding a non-Bosch Sensortec Fusion Library related new custom virtual driver

6.1 Driver directory structure

6.2 Writing driver code

6.3 Selecting a driver ID

6.4 Driver CMakelLists.txt file

6.5 Modifying the board configuration file

6.6 Modifying the SDK configuration file
6.7 Build the custom firmware

6.8 Altitude example

7 Integrating a library and applying it to the custom sensor driver

7.1 Library directory structure

7.2 Implementing a sensor driver that uses the library
7.3 Modifying the board configuration file

7.4 Modifying the SDK configuration file

7.5 Build the custom firmware

8 Glossary

8.1 Virtual Sensor

8.2 Driver ID

8.3 Sensor ID

10

10
11

12
13

13
14
15
15
16
17
18
19
19
19

20

20
20
22
22
23
23
23
24

25

25
25
26
26
27

28

28
28
28

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

29

9 Legal disclaimer

30

10 Document history

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 5:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

BHIBB0 SDK INSTAIET ...ccneeeiieeeiieeeeetee et eee ettt e e e ettt e e e e rttee e e e ttaeeeesaaeseessbaeeaanssaaeaasssaaeasnssssaaansssasannssnaeannssaaaans 7
Installation deStiNAtION IFECIONYeeveii ittt eeee e e e e e e e eeesrreaeseeeeesensssaseeeesessesnsssssaseesanns 7
ECliPSE WOTKSPACE PrOMPT..ccciiiiiiiiiieeeiieecitteteee ettt e e e eeeesatbrereeeeeeessssasesseeeesssssssssssseessssssssssssseeessssnsssssnnesessenans 8
Configuring the DUIIA triEET......ccceveee ettt erree e e nrae e e nnees Error! Bookmark not defined.
CoNfigUINNE the DU tHIEET....eei ettt ettt e e e ete e s e e ttee e eeeraee s seseaee e nsaaeesenseaasennseaassnnseaaesnnsens 9
Configuring the bUIld triZEEI'S ArGUMENESuiiieeeieeeeeiee et ettt eeeree e eeereeeeeeseeeeesssseeeesseeesesssessesssaessessaeeennnsees 9
GNU toolchain releases doWnload PAEceeiccuieiieciieiiccieee et eetee e eeetee e e e etee e eeteee e e esaaeseeseaessenstaeessnseaessnnsenas 10
Architecture of physical aNd VIFUAL AIIVEISeeeeeeiiieeeirieececreeeeectee et eeerreeeeestreeeeessseeeeessseseeessasesesssasesensasenen 13

Figure 9: Driver dESCrPIOr OVEIVIEWcc..uiiiieeiiieeeeiiteeeecieeeee e e e eecteeeeesteee e s saeeeeessaaeeessaseaassaaeaassaseasssasesanssesesenssasassnssenes 14
FigUIE 10: DIiVEr CIMaKELISTS tXt..uueeieiieieeiiiiieieeeieeeciiitteee e e eeeeecttreeeeeeeee e rtrreeeeeeeeessnsssssseesaeesssnsssesssessesasssssssssesensssnssssnseeesnnns 15
Figure 11: Board configuration fil@ OVEIVIEW.........coc.uiiiieceeecceeeecte ettt e et e e e ree e s e va e e s e abas e s e s asae e e s asaaaeensasesennsenns 16
Figure 12: Modifying the board coNfigUration fil@..........ooccueieeeiiiieeecieee et e rreeeesreeeeesreeeeeenaee e e aneeeeennsneeesnnnnnas 17
Figure 13: Overview of the SDK configUuration fil€c.ueee ettt ee e e ree e e e ra e e e e rae e e e aaaas 18
Figure 14: Modifying the SDK CONfIGUIAtioN fil@........vuieeeiiiieeerieeeecee ettt et e eee e e e eeereeeeesneee e e assaeeennnseeesnnnnees 19
Figure 15: DriVEr dESCHIPIOr OVEIVIEWuviiieeiiieeeeiiteeeectteeeeiteeeeecteeeeesteeee s sbeeeeessaseeesssaaaaassaseaenssassasassaessenssesasenssesesenssenns 21
FIgUIE 16: DIiVEI CIMaKELISTS EXt..ueeeieiiieeeiiiiieieeeieeeciiittee e e e ceeeectreeeeeeeee e stsreeeeeeeeesssssssseeseeesssnnssassseseesesssssssssesennssnnsssnsseeesnnes 22
Figure 17: Modifying the board configUration fil@..........occuuiee e e e e sree e e e aae e e e re e e e e nraae e e anaaas 23
Figure 18: Modifying the SDK CONfIGUIAtioN fil.........vviieeiiiieeerieeeeceee ettt et e ee e e e eereeeeeesaeeeeeassaeeennnseeeennnneas 23
Figure 19: Altitude oUtPUL data StrUCIUIE......coc ettt e e e te e e e rtr e e e et e e s e sa e e s e asaae e e ssaeeeessaaaaensasessnnsenns 24
FISUIE 20: CIMAKELISIS.EX ceeeiiiiriieiee ettt e e eeecctrte e e e e eeeeettreeeeeeeee e sssaaeeseeeesnsssssaaaseesesnssssssseseesasssssssesesesnessssssnesessnnnns 25
Figure 21: Modifying the board configUration fil@..........ccuueei i et e e ree e e e ra e e e e rae e e e aaaaas 26
Figure 22: Modifying the SDK CONfISUIatioN filE.........vveeeieeeeeieeeeecree ettt eerrre e ee e e eesre e e eeeareeeeesanaeeeesanseeeesnsnnessnnnnnas 26

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:

Pre-build SDK directory structure in WINAOWSeiiiiiiieeciiieeee ettt e s eeeccirtreee e e s s e evreeeeeeessesesssesaesesesesnnssnns 10
Pre-build SDK direCtory StrUCIUIE iN LINUXcieeeeiiiireeeeeeeeeeiiieeeeeeeeeeeinrreeeeeeeeessssseeseseessssssssssssesesssssssssssssessssssssssnns 11
DYV o =T (o] YA o) o1 (=T o | SRR UUSPRRRRNE 13
1= gL I o TV TR o111 o USRI 17
DYV o =T (o] YA o) 01 (=T o | SRR UUPRPRRNE 20
(] o] £= Ve [1 €Yot (o] AV oo 1 (=10 | ARSI 25
DYV o 14T (o] YA o) 01 (=T o | SRR UUPRRRRNE 25

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

Abbreviations

BST

BSX
FIFO
GCC
RAM
SDK

uSB
TRNG
RDRAND

Bosch Sensortec

Bosch Sensortec Fusion Library
First In First Out

GNU Compiler Collection
Random Access Memory
Software Development Kit
Universal Serial Bus

True Random Number Generator

Read Random

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

1 Introduction to the SDK

This document briefly describes the process of developing firmware for the BHI360 (BHI380). It provides instructions on
how to

» set up the development environment
» build the SDK
» get started with custom configuration files.

For more details about hardware configuration, refer to BHI360-BHI380 Datasheet.
For more details about developing new drivers, refer to the following manual and user guide:

» BHI360-BHI380 Programmer’s Manual
» BHI360-BHI380 Evaluation Setup Guide

The BHI360 (BHI380) SDK can be used to develop a custom firmware image. The customization includes

» modifying the board configuration

changing the mapping of pins

changing the device orientation

allocating memory to the FIFO

creating custom drivers which can run algorithms or other tasks
data injection for processor in the loop verification.

vvVvyyvwvyy

The firmware built by using the SDK can be downloaded to the BHI360’s RAM.

For more details, refer to BHI360-BHI380 Programmer’s Manual.

2 Setup in Windows

This chapter describes how to install the required tools in Windows. The BHI360 (BHI380) SDK supports two toolchains:
ARC GNU toolchain and Synopsys Metaware. This guide focuses on how to build the SDK with the ARC GNU toolchain.
Since the SDK generates signed firmware images and the signing tool requires the True Random Number Generator
feature of the CPU to generate a valid signature, the CPU used to build the SDK must support the RDRAND instruction.

2.1 Installing the compiler and support tools

The GNU Toolchain for ARC Processors can be downloaded from the Synopsys Github Website. Download the file
“arc_gnu_2022.09_ide_win_install.exe” or newer and run this setup installer executable. This will primarily install the
Eclipse IDE and the ARC GNU Compiler.

Please download the latest ninja tool from Ninja Release Website, extract ninja.exe from ninja Windows package and
replace the old one at win64/bin under BHI360 (BHI380) SDK root path.

2.2 Installing the SDK

For Windows system, an SDK installer is provided. To install the SDK, do the following:

1. Execute the BHI360_SDK_V1.0.6_Install.exe or newer, accept the license agreement and click Next, as shown in
Figure 1.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
https://github.com/ninja-build/ninja/releases

o

License Agreement
Please read the following important information before continuing.

Flease read the following License Agresment. You must accept the terms of this
agreement before combnung with the installation,

License Agreement
This software development it (herenafier called "S0K" or "Software”) and any

redated

nformation (hereinafter called Tnformation”) i provided free of dharge for the
sole purpose
to support you [Licensee™) in your product development and application wark in

connechon
with the wse of Bosch Sensortec FUSER Core sensor products.
THE SDE-S0FTWARE and SD¥- INFORMATION ARE LICEMSED SUBJECT TO b

(®) [accept the agreement
()1 do not accept the agreement

Figure 1: BHI360 SDK installer

2. Select the destination location for the SDK.

Then in the SDK destination directory, “BHI360_SDK_VX. Y. Z” is created.

5

Select Destination Location
Where should BHI-360 SDK Instaler be instaled?

Setup will install BHI350 SDK Installer into the following folder.

To continue,, didk Mext. If you would lke to select a different folder, dide Browse,

C:'YUisers\SDEUiser Documents Browse...

At least 80, 3 MB of free disk space is required.

T e

Figure 2: Installation destination directory

2.3 Importing the SDK into Eclipse

1. Set up Eclipse.
a. Run the Eclipse IDE by clicking on its shortcut on the Desktop, which should be generically named “ARC
GNU IDE YYYY.MM(-rcN) Eclipse”. For example, “ARC GNU IDE 2021.09 Eclipse”.

b. During the first launch, you will be prompted to select a workspace. The default directory is an empty
directory that stores multiple projects. You can select your preferred workspace directory.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

& Eclipse IDE Launcher X
Select a directory as workspace

Eclipse IDE uses the workspace directory to store its preferences and development artifacts.

Workspace: | C\Users\SDKUser\ARC_GMU_IDE_Workspace ~ Browse...

Use this as the default and do not ask again

Figure 3: Eclipse workspace prompt

2. Import the BHI360 SDK as a project.
a. Inthe Eclipse IDE, go to File > New > Makefile Project with Existing Code

b. In the prompt, type a project name, for example, as shown in the figure below. Select the SDK directory
and then click Finish.

=]
Import Existing Code

Project Name
[BHIz80_SOK

Existing Code Location

[C\Users\SDKUser\Documents\BHIZE0_SDK Browse...

Languages
Mc FAC++

Toolchain for Indexer Settings

<HONE

Cross GCC

Cygwin GCC

GNU Autatools Toolchain
GNU Toolchain for ARC 600
GNU Toclchain for ARC T00
GNU Toolchain for ARC HS
MinGW GCC

[7] Show only available toolchains that support this platform

Finish Cancel

c. Ifthe Welcome tab is open, close it to reveal the Project Explorer.
3. Link the project build to the batch script that builds the firmware.

a. In Windows, the building of the firmware is managed by a batch script named build.bat which can be found
in the root of the SDK directory.

b. Right-click on the BHI360_SDK project and select Properties.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

(=]
type filter text C/C++ Build = - v
Resource
Builders
C/C++ Build Configuration: | Default [Active | ~ Manage Configurations...
C/Cs» General
Linux Tools Path
Project Natures [= Builder Settings (%) Behavior . Refresh Policy
Project References
Run/Debug Settings Builder
Task Repository Builder type: External builder
Task T
S P [_EUS: default busld command
Vahdatson
WikiText Build command: | build.bat Variabiles...
Makefile generation
[Generate Makefiles automatically
Build location
Build directory: | ${workspace_loc/BHI30_ SDKY/
Workspace... Filesystem... Variables...
Restore Defauits Apply
)] Apply and Close Cancel

Figure 4: Configuring the build trigger

€. Under C/C++ Build / Builder settings, deselect Use default build command and refer the image for selecting
the build trigger. Click Apply.

d. Under the C/C++ Build / Behavior, deselect Clean and remove the command all from the Build behavior, as
shown in the figure below. Click Apply and Close.

e
fiter Yot C/C++ Bulld - ” o

Resource

Buslders

C/Co+ Buidd Configuratione Default | Active | ~ Manage Configurations.

C/Ce+ General

Lirwax Tools Path

Proyect Mstures = Builder Settings ™ Behavie 5 Refresh Pokey

Pregect References

Run/Debug Settings. Build setbngi

Task Repostery £ Step on fest build emor [Enable paraliel budd

Task Tagn o optional pobs (4

Vabdaben

Wil Text
Workbench Buald Behavsoe
Waorkbench build type: Make build target:
] Budd on resource save (Auto build] » Varsable
Note See Workbench sutomatic buald preference
E4 Budd (Incremental busld) Varables...
Ll Clesn ear Varable

Restore Defaults Apply
? Apply and Close Cancel

Figure 5: Configuring the build trigger's arguments

e. Click on the build icon . This will run build.bat and the progress is visible in the console located at the
bottom.

4. Locate the built firmware.
a. The firmware build can be found under release/gccfw in the root directory of the SDK. If the firmware is
built by Metaware rather than ARC GNU toolchain, it can be found under release/fw instead.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

3

3.1

Table 1: Pre-build SDK directory structure in Windows

SDK File/Directory

Description

Directory which contains the source code for applications running outside the sensor

apps framework

boards Configuration files for the supported development boards and sensors
cmake CMake files used to build the SDK

common Source code for initialization code and reference header files

docs SDK documentation

drivers Source codes of sensor drivers from Bosch Sensortec

drivers_custom Source codes of additional custom drivers

gdb Support files for using gdb

kernel Exported symbols for kernel-mode firmware

libs Linkable binary image and header files for APl libraries

user Entry code for user-mode firmware, source code for custom user-mode RAM patches
win64 Executable image manipulation utilities, command line interface
build.bat Shell script used to set up build directory and build the specified target

Setup in Linux

Installing the ARC GNU toolchain and support tools

To get started, the following system requirements must be met:

» 64-bit Linux operating system (Ubuntu 14.04 LTS or later)

» Atleast 1.1 GB of free disk space
Before the SDK can be used, ARC GNU toolchain, CMake, and other necessary dependencies must be installed.
The operations in this guide have been verified on Ubuntu 14.04 LTS and 16.04 LTS.

Download the ARC GNU toolchain.
The ARC GNU toolchain releases are available on the Synopsys Github Website. A pre-built toolchain that
supports elf32 little-endian hosts is required.
In this example, the 2022.09 release is used. This release can be downloaded from the same download page as

1.

the previous releases.

The right installation package to download is “arc_gnu_2022.09 prebuilt_elf32 le_linux_install.tar.gz”.

@arc,gnu,ZUﬂ.OB,ideJinux,install.tar.gz 1.49 GB
@arc,gnu,ZUﬂ.Oajde,macosjnstall.tar.gz 1.26 GB
@arcignujﬂﬂ.ngde?plugins‘zip 865 KB

@arc_gnu_2021.09_ide_win_insta|l.exe 841 MB
@arc_gnu_2021.09_prebuiIt_eIf3Z_be_Iinux_install.tar.gz 555 MB
@arcignu,2021.09,prebuiIt,elf3Z,be,macos,instaII.tar.gz 541 MB
@arcignufznﬂ.DELprebuiItﬁeIf3ZfleflinuxjnstalI.tar.gz 527 MB
@arcignufznﬂ.097prebuiItﬁelf3Zflefmacosiinstall.tar.gz 516 MB
@arcignujﬂﬂ.DELprebuiItﬁgIibcibeiarchsflinuxiinstall.tar.gz 119 MB
@arc_gnu_2021.09_prebuiIt_gIibc_le_archs_linux_install‘tangz 118 MB
@arc_gnu_2021.09_prebuiIt_gIibc_le_archs_native_install.tar.gz 106 MB
@arc,gnu,2021.09,prebuiIt,uclibc,be,ar&oo,linux,install.tangz 72.5 MB
@arcignufznﬂ.OaiprebuiItﬁuclibcibeiarchsilinuxjnstall.tar‘gz 88.8 MB
@arcignujﬂﬂ.OgiprebuiItﬁuclibcjeiarc'ICIO?Iinux?install.tar.gz 71.6 MB
@arcignujﬂﬂ.DELprebuiItﬁuclibcjeiarchsilinuxiinstall.tar.gz 87.8 MB

[Flsource code (zip)

@50urce code (tar.gz)

Figure 6: GNU toolchain releases download page

10

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases

11

2. Install the GNU toolchain.
a. Run the following commands to extract the GNU toolchain installation package:

$ tar -xvf arc_gnu_2022.09 prebuilt elf32 le linux_install.tar.gz
$ sudo mkdir -p /opt/arc_gcc
$ sudo mv arc_gnu 2022.09 prebuilt elf32 le linux_install /opt/arc_gcc

b. Run the following commands to verify the GNU toolchain has been installed successfully:
$ cd /opt/arc_gcc/arc_gnu_2022.09 prebuilt elf32 le linux_install/bin/
$./arc-elf32-gcc -dumpversion

c. Update the PATH variable to include
“opt/arc_gcc/arc_gnu_2022.09_prebuilt_elf32_le_linux_install/bin/”. This can be done by modifying the
shell start-up script as appropriate. For example, edit “/etc/profile” with the following command.

$ sudo nano /etc/profile

d. Add the path to the file by adding the following line.
export PATH=$PATH:/opt/arc_gcc/arc_gnu_2022.09 prebuilt elf32 le linux_install/bin

3. Install the CMake and other dependencies.
a. To install the CMake, run the following commands:

$ sudo apt-get install cmake
$ cmake --version

b. To install the other dependencies or tools if necessary, run the following commands.
$ sudo apt-get install libelf-dev
$ sudo apt-get install g++
$ sudo apt-get install 1lib32stdc++6

c. ltis highly recommended to install ninja to speed up the build process by parallel building.

$ sudo apt-get install ninja-build

3.2 Installing the SDK in Linux

The SDK is released as an installer “BHI360_SDK_VX.Y.Z Install.sh”.

Take BHI360 SDK V1.0.6 for example, to make the installer executable, run the following command:

$./BHI360_SDK_V1.0.6_Install.sh

Bosch Sensortec License must be accepted by typing yes in the command line prompt. Then, the installer prompts to move
to the preferred directory. The default installation directory is “6{HOME}/Bosch_Sensortec_Fuser2_SDK”.

The SDK has the directory

in Table 2.

structure as shown

Table 2: Pre-build SDK directory structure in Linux

SDK File/Directory Description

apps Directory that contains the source code for applications running outside the sensor
framework

boards Configuration files for the supported development boards and sensors

cmake CMake files used to build the SDK

common Source code for initialization code and reference header files

docs SDK documentation

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

12

SDK File/Directory Description

drivers Source codes of sensor drivers from Bosch Sensortec

drivers_custom Source codes of additional custom drivers

gdb Support files for using gdb

kernel Exported symbols for kernel-mode firmware

libs Linkable binary image and header files for APl libraries

user Entry code for user-mode firmware, source code for custom user-mode RAM
patches

utils Executable image manipulation utilities, command line interface

build.sh Shell script used to set up a build directory and build the specified SDK

4 Building the SDK and loading firmware into the BHI360 (BHI380)

In Windows, clicking on the build icon in the Eclipse IDE or executing the build.bat script will trigger the build process.
In Linux, run the build script in its root:

$./build.sh

build and release directories are created after the build script is executed. If both the ARC GNU compiler and the Metaware
compiler are available on the path, the Metaware compiler is used. To override this behavior and force the use of the ARC
GNU compiler, add the option “USE_GCC” as an argument to the build script.

$./build.sh USE_GCC

$./build.bat USE_GCC

For the BHI360 (BHI380), one image for RAM is generated. With successive build triggers, all previously generated files
under the build and release directories are removed and new firmware files are generated under the release/gccfw or
release/fw folder.

The generated “*.fw” file can be verified by using the bhy2cli tool. The bhy2cli is a command line tool based on the COINES
tool that interfaces with the BHI360 (BHI380) through Bosch Sensortec’s application board. The tool can be used to load
and run standard and custom firmware images among other features.

For example, running

$ bhy2cli -b release\fw\Bosch_Shuttle3_BHI360_BMM150.fw -c 34:25

loads the firmware file Bosch_Shuttle3_BHI360_BMM?150.fw for the board configuration
Bosch_Shuttle3_BHI360 BMM150.cfg and switches on streaming of the sensor ID 34 at 25Hz to the terminal. Refer to
BHI360-BHI380 Evaluation Setup Guide for more information on building the bhy2cli tool.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

13

5 Adding a BSX based new custom virtual driver

In order to demonstrate how one can add a custom driver to the SDK, two drivers, VirtBSXLeanDeviceOrientation and
VirtBSXCustomAccelDataSource, have already been included in the SDK as examples but have not been used in any of
the firmware images.

Both VirtBS XLeanDeviceOrientation and VirtBSXCustomAccelDataSource are in the drivers_custom directory of the SDK.
VirtBSXCustomAccelDataSource receives accelerometer data from the Bosch Sensortec Fusion Library but does not send
it to the host. Instead, it triggers VirtBS XLeanDeviceOrientation which receives the data, processes it, and stores the
processed data in the requested FIFO.

Wake-Up Output Gates /Non-Wake-Up Output Gates

Virtual
Driver
BSX4

Phys. Drv.

Sensor GYR
Fusion

Phys. Drv. Baro
Baro

Custom

Algorithm
Virtual Data Sourca
Drivers pll Virtual Drivers

FUSER2 BHI360

\
Custom Output Gates

AN

Figure 7: Architecture of physical and virtual drivers

For more information on how to develop a new physical sensor driver or virtual sensor driver in the SDK, refer to the
BHI360-BHI380 Programmer’s Manual.

5.1 Driver directory structure

The sensor driver code must be in its own directory under the drivers_custom directory of the SDK. The directory name
should reflect the device name and driver type, for example, VirtBSXLeanDeviceOrientation.

Table 3: Driver directory content

File in Driver Directory Description

CMakelLists.txt Build description of the driver

VirtBSXLeanDeviceOrientation.c Source code of the driver

Header file Header file typically defining register locations and other
constants for the driver if needed

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

5.2 Writing driver code

The dependency between the two virtual sensors is described below.

14

For more detailed and complete information on how to program sensor drivers, refer to the BHI360-BHI380 Programmer’s

Manual.

“hidden =TRUE” means the sensor is not
visible to host, and it only provides data source.

VirtBS XCustomAccelDataSource is the trigger source of
VirtBS XLeanDeviceOrientation.

VIRTUAL_SENSOR_DESCRIPTOR VirtualSensorDescriptor
descriptor virt bsx custom accel data source = {
.physicalSource = {
.sensor = {
-type = {
.value = BSX_ INPUT_ID ACCELERATION,
.flags = DRIVER_TYPE_PHYSICAL_FLAG,

.info = {
.id = DRIVER_ID,
.version = DRIVER REV,

ACCELERATIO
IRTUAL_FLAG,

.wakeup a
.hidden = TRUE,

by
.expansionData = {

.£32 = OUTPUT_SCALING FACTOR,
I

.maxRate = 800.0F,
.minRate = 1.5625F,

.outputPacketSize = sizeof (output 3axis t),
.priority = PRIORITY_2,

.initialize = NULL,

.handle_sensor_data =
BSXSupport trigger custom sensors,
Vi

VIRTUAL_SENSOR_DESCRIPTOR VirtualSensorDescriptor

descriptor virt bsx lean device orientation = {
.triggerSource = {
.sensor = {
type = {
SENSOR YPE BSX (B ID ACCELERATION CORRECTED)
’
fl = DRIVER TYPE VIRTUAL FL

}

.physicalSource = {
.sensor = {
.type = {

.value

BSX_INPUT_ID ACCELERATION,
.flags = DRIVER TYPE PHYSICAL_FLAG,

.info = {
.id = DRIVER ID,
.version = DRIVER REV,

¥, The Sensor ID is made
visible to the host.

-type = {

.value = SENSOR_TYPE_CUSTOMER VISIBLE_START,
.flags = DRIVER _TYPE VIRTUAL_ FLAG,
.wakeup ap = FALSE,

by

.maxRate = 800.0F,
.minRate = 1.5625F,

.outputPacketSize = sizeof (output_t),
.priority = PRIORITY 2,

.initialize = ldo_initialize,
.handle_sensor_data = ldo_handle_sensor_data,
.mode_changed = ldo_on_power mode changed,

Figure 8: Driver descriptor overview

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

15

5.3 Selecting a driver ID

To add a new virtual sensor driver, the first step is to select the available driver ID for compilation. Unless the driver to be
developed is already included in the SDK, users may choose any unused 8-bit number. There is a python script under the
root directory of the SDK. Running it will show the existing driver names and associated driver IDs. Using this script will
need an existing installation of Python.

$ python find BHy3 driver_IDs.py

In this excerpt, we have selected the driver IDs 131 and 132 in the Driver CMakeLists.txt file (See section 5.4). Each driver
has a unique driver ID.

5.4 Driver CMakelLists.txt File

The below mentioned CMakeLists.txt file automatically pulls in the sources from each driver. It is used by the build system
at link time to associate the driver ID listed with a driver’s object file. More driver IDs can be defined in the same way.
Usually users do not need to modify it.

Take drivers_custom/VirtBS XLeanDeviceOrientation/CMakeLists.txt for example:

SET (DRIVER ID 132)

get_filename_component(DRIVER KEY ${CMAKE_CURRENT_LIST_DIR} NAME)
project (${DRIVER KEY} C)

FILE (GLOB SOURCES "*.c")

include directories(../../libs/BSXSupport/includes/
../../1libs/BSX/includes/)

ADD ARC DRIVER(${DRIVER KEY} ${DRIVER ID} ${SOURCES})

Figure 9: Driver CMakeLists.txt

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

https://www.python.org/

16

5.5 Brief introduction to the board configuration file

Board configuration files are used to specify the configuration for a firmware build. A board configuration file consists of a
global configuration section, a physical driver configuration section and a virtual driver configuration section. Lines can be
commented with a hash (#) and are commented until the end of the current line.

Default configuration of GPIO pins

Sensor interface configurations (SPI, 12C masters)

Allocation of FIFO memory

CPU speed: long run (20MHz) or turbo (50MHz)

Building firmware for Host boot

Configuration parameters for BSX fusion library

List of physical drivers to be linked into the firmware file and their characteristics
» List of virtual drivers to be linked into the firmware file

All board configuration files are in the boards directory.

Take boards/Bosch_Shuttle3_BHI360_BMM150.cfg for example:

VVVVYyVYVY

#Global Configuration
stuffelf,13

irqg, 0
evcfg,0,0,0,0,0,0,0,0,0,0,0,0
#Pin, 0, 1, 2, 3, 4 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, lo, 17, 18, 19,

’
20, 21, 22, 23, 24, 25, 26, 27
pull, off, on, off, off, on, off, on, on, off, off, off, off, off, off, off, off, off, on, on, on,
on, off, on, off, on, off, off, off
gpio, hiz,

hiz, hiz, hiz

sif_cfg,l sif_cfg is used to define the hardware connections. Physical sensor configuration
?Egdgz‘ﬂgée' 0 See Table 4: sif and bus options The magnetometer is connected over
wordsreq, 0 Here it is set as 1, which selects M1 as spi0, M2 as the i2c0 bus, on the 12C address “16”.
turb‘g' 0 i2c0, and M3 as i2c1. The accelerometer and gyroscope are
o For details about M1/M2/M3, refer the BHI360-BHI380 connected over the spi0 bus, using
rom_name,bosch_rom Datasheet. “GP1025” as the chip select pin.

hw, 7189 —

version, 0

uild_type is used to define the type of output
firmware: all, ram, test.

#Any Accel+Any Gyro+BMM150Mag

config list,libs/BSX/SolutionList/csvLi 60 IMU BMM.txt

#Physical Drivers

#Driver dr,GPIO,Cal0,Call,Cal2,Cal3,Cal4,Cal5,Cal6,Cal7,Cal8,0f£f0,0ff1,0ff2, maxRate,Range

11,i2c0,16,-, 0, 0, 0, 50.0000000 FBMMS OO - -
26,spi0,25,2 € 0, 0, 0, 800.000000, 0 #BHI360Accel on SPIO GPIO is used to define
25,spi0,25, -, 0, 0, 0, 800.000000, O #BHI360Gyro on SPIO the phygca|"ﬂe"uptpm_

1 h | :
Virtual Drivers,maxRate Here the accelerometer’s
P40, -1.000000 # VirtBSX: BSX depends ¢n a programatic trigger source. interrupt pin is connected
241, 400.000000 # VirtBSXAccel: accelerometer corrected data depends on VirtBSX. to GPIO 2.

209, 400.000000 # VirtBSXAccelOffset: accelerometer offset data depends on VirtBSX.

205, 400.000000 # VirtBSXAccelPassthrough: accelerometer passthrough data depends on VirtBSX. The magnetometer is
polled and hence not

interrupt pin is assigned

“_e

224, -1.000000 # VirtHangDetection: hang detector depends on a 25Hz timer.
—l and hence set to

Each driver has a “CMakelLists.txt” file that contains the
“DRIVER_ID” defined.
These are the “DRIVER IDs” included in the firmware. Accelerometer, Magnetometer and Gyroscope axis remapping matrix

New driver IDs can be added or removed as needed. values. For details refer the BHI360-BHI380 datasheet.

Figure 10: Board configuration file overview

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

Table 4: sif and bus options

sif M1 M2 M3

0 SPIO SPi 12C1
1 SPI0 12CO 12C1
2 12CO SPi 12C1

17

For more details about the sif configuration, refer the BHI360-BHI380 datasheet. For details about the board configuration
file, refer the BHI360-BHI380 Programmer’s manual.

5.6 Modifying the board configuration file

In order to add the VirtBSXLeanDeviceOrientation and VirtBSXCustomAccelDataSource virtual sensors into the
Bosch_Shuttle3_BHI360_BMM150_Cus.fw one must add a new configuration file

boards/Bosch_Shuttle3_BHI360 BMM150_Cus.cfg (take Bosch_Shuttle3_BHI360_ BMM150.cfg as the reference) and add
the virtual drivers to the virtual sensor list in the respective “*.cfg” file as shown below.

131,
132,
240,
241,
2009,
205,

#Virtual Drivers,maxRate

800.000000 # VirtBSXCustomAccelDataSource: depends on a physical accelerometer
800.000000 # VirtBSXLeanDeviceOrientation: depends on a virtual BSX source.
-1.000000 # VirtBSX: BSX depends on a programatic trigger source.

400.000000 # VirtBSXAccel: accelerometer corrected data depends on VirtBSX.
400.000000 # VirtBSXAccelOffset: accelerometer offset data depends on VirtBSX.

400.000000 # VirtBSXAccelPassthrough: accelerometer passthrough data depends on VirtBSX.

Link VirtBSXCustomAccelDataSource (Driver ID: 131) and
VirtBS XLeanDeviceOrientation (Driver ID: 132) into the
Bosch_Shuttle3_BHI360_BMM150_Cus.fw

Figure 11: Modifying the board configuration file

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

18

5.7 Brief introduction to the SDK configuration file

In brief, all SDK generated firmware images include both the pre-built kernel image and user images. This configuration file
includes board configuration files, enabled drivers, libraries, etc.
The SDK has one configuration file common/config.7189_di03_rtos_bhi360.cmake, which can be edited as needed.

set (BOARDS The BOARDS variable describes which of
Bosch_Shuttle3 BHI360 the target boards’ configurations are to be
Bosch Shuttle3 BHI360 turbo buil h he “build.sh” or “build.bat”
Bosch_Shuttle3 BHI360 BMMI1S50 uilt. When the “build.sh™ or “build.ba
script is executed, only the firmware for

) those specific boards are built.

set (DRIVERS _NO_SOURCE The DRIVERS NO SOURCE variable

BMM150Mag X . - : i .
BHI360SigMotion describes which drivers (including physical
and virtual drivers) are already present as
VirtBME680Humidity library files in the SDK.

VirtHangDetection

set (ENABLED DRIVERS Drivers whose sources need to be built, like
#Example Injection driver custom drivers, should be directly added to
${DRIVERS NO SOURCE} the ENABLED DRIVERS variable.

Figure 12: Overview of the SDK configuration file

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

19

5.8 Modifying the SDK configuration file

To build a firmware that contains the reference custom drivers for the target board configuration the
common/config.7189_di03_rtos_bhi360.cmake needs to be modified as shown below.

set (BOARDS
Bosch Shuttle3 BHT360 Add Bosch_Shuttle3_ BHI360_BMM150_Cus
Bosch Shuttle3 BHI360 turbo to the BOARDS variable.
Bosch Shuttle3 BHI360 BMM150

Bosch_Shuttle3 BHI360 BMM150_ Cus
)

set (ENABLED DRIVERS Add VirtBSXLeanDeviceOrientation and
VirtBSXLeanDeviceOrientation VirtBSXCustomAccelDataSource to the
VirtBSXCustomAccelDataSource ENABLED DRIVERS variable.
#Example Injection driver —
AccellInject
${DRIVERS NO SOURCE}

Figure 13: Modifying the SDK configuration file

5.9 Building the custom firmware
To build only a specific board configuration file, the name of the board can be passed as an argument. For example, in
Linux this would look like,

$./build.sh Bosch_Shuttle3_BHI360_BMM150_Cus

If more than one board needs to be built in a similar way, a semicolon is required between board names like below,

$./build.sh "Bosch_Shuttle3 BHI360 BMM150 Cus;Bosch_Shuttle3 BHI360"

The build.bat file for Windows can accept similar arguments.

The custom firmware is now available under release/gccfw as Bosch_Shuttle3 BHI360_BMM150_Cus.fw. Like with the
reference firmware, you can use the bhy2cli like below to load the firmware and view the lean orientation sensor’s output
using the generic type of handle.

$ bhy2cli -b release/fw/Bosch_Shuttle3 BHI360.fw -a 160:"Lean Orientation":2:c:c -c 160:1

5.10 Lean orientation example

With the new custom virtual drivers inside the firmware, the host should also be able to configure the sensor ID and parse
sensor events from the FIFO.

The corresponding host side example of the virtual sensor VirtBSXLeanDeviceOrientation called “Lean Orientation” is
provided separately. Refer to the BHI360-BHI380 Evaluation Setup Guide on how to verify and evaluate the
aforementioned newly integrated virtual sensors.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

20

6 Adding a non-Bosch Sensortec Fusion Library related new custom virtual
driver

This chapter takes VirtAltitude for example to describe how to add a non-Bosch Sensortec Fusion Library related new
custom virtual sensor driver. The steps are same as in Chapter 5, except that some details vary depending on the actual
requirements.

VirtAltitude is in the drivers_custom directory. It creates custom altitude data and sends it to the respective FIFO.

For more information on how to develop a physical/virtual sensor driver in the SDK, refer to the BHI360-BHI380
Programmer’s Manual.

6.1 Driver directory structure

The sensor driver code must be in its own directory in the drivers_custom directory of the SDK. The directory name should
reflect the device name and driver type, for example VirtAltitude.

Table 5: Driver directory content

File in Driver Directory Description

CMakelLists.txt Build description of the driver

VirtAltitude.c Source code of the driver

Header file Header file typically defining register locations and other constants for the driver if
needed

6.2 Writing driver code

Below is code snippets VirtAltitude driver in Figure 16, which explains its trigger source and how to exchange reference
sea level values with the host through the parameter interface.
For more information on how to program sensor drivers, refer the BHI360-BHI380 Programmer’s Manual.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

#define PARAM PAGE_OPTIONAL_SDK

The driver’s version number
is 4.

(8)

Use the Parameter page 0x08, index 0x00 to set and get
the reference pressure at sea level. It is 4 bytes register to
contain an unsigned 32 bit value. Host can set and get this
reference pressure configuration in run-time to get accurate

altitude estimation.

#define OPTIONAL_SDK_PARAM ALTITUDE_SEE LEVEL (0x00

bool optional sdk _page write handler (uint8_ t param, uintl6_t length, uint8 t buffer[])

bool optional_sdk page_read handler (uint8_t
*ret length)

param,uintl6_t length, uint8_t buffer[],

static SensorStatus virt altitude initialize sensor (VirtualSensorDescriptor *self)

{
(void) registerWriteParamHandler (PARAM PAGE_OPTIONAL_SDK, optional_sdk_page_write_handler);
(void) registerReadParamHandler (PARAM PAGE OPTIONAL SDK, optional sdk page read handler);
verbose ("altitude initialize\n");
return SensorOK;

VIRTUAL SENSOR DESCRIPTOR VirtualSensorDescriptor virt altitude descriptor =
{

.triggerSource =

{

.Sensor =

{
.type =

uintlé_t

{

.value = BSX INPUT ID PRESSURE,

VirtAltitude’s trigger source is physical pressure sensor.

.flags = DRIVER TYPE PHYSICAL_FLAG,

.physicalSource =
{
.sensor =
{
.type =
{

.value = BSX_INPUT_ID PRESSURE,

.flags = DRIVER TYPE PHYSICAL FLAG,

.id = DRIVER ID,
.version = DRIVER_REV,
by

.type =

.value = SENSOR TYPE_ ALTITUDE_SENSOR,
.flags = DRIVER_TYPE_VIRTUAL_FLAG,

it is visible to the HOST.

VirtAltitude’s sensor ID is a visible ID, which means that

.wakeup_ap = FALSE,
.no_decimation = FALSE,
.on_change = FALSE,

.outputPacketSize = sizeof (output_t),
.priority = PRIORITY 6, /* Low priority */
.initialize = virt_altitude_initialize_sensor,
.handle sensor data = virt altitude handle sensor data,

Figure 14: Driver descriptor overview

21

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

22

6.3 Selecting a driver ID

To add a new virtual sensor driver, the first step is to select the available virtual driver ID for compilation. Unless the driver
to be developed is already included in the SDK, users may choose any unused 8-bit number.

In this excerpt, we have selected the driver ID 123 in the CMakeLists.txt file. Each driver has a unique driver ID.

6.4 Driver CMakelLists.txt file

The CMakelists.txt file pulls in all the sources from the root directory of each driver. It is used by the build system while
linking to associate the driver ID listed with a driver’s object file. Additional driver IDs can be defined in the same way. This
generic file typically needs no modification.

Take drivers_customy/VirtAltitude/CMakeLists.txt for example:

SET (DRIVER ID 123)
get filename component (DRIVER KEY ${CMAKE CURRENT LIST DIR} NAME)

project (${DRIVER KEY} C)
FILE (GLOB SOURCES "*.c")

ADD ARC DRIVER (${DRIVER KEY} ${DRIVER ID} ${SOURCES})

Figure 15: Driver CMakelLists.txt

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

6.5 Modifying the board configuration file

23

The example below describes how to include VirtAltitude in Bosch_Shuttle3_BHI360_BMM150_BMEG680.fw by editing the
existing configuration file “6SDK/boards/Bosch_Shuttle3_BHI360_BMM150_ BMEG680.cfg” as shown below.

217, -1.
123, 16.
184, -1.
219, -1.
216, -1.
183, -1.
218, -1.
185, -1.

000000
000000
000000
000000
000000
000000
000000
000000

4o e e 3 4R e e

#Virtual Drivers,maxRate

VirtTemperature: temperature depends on a physical temp source.
VirtAltitude: depends on a physical pressure source.

VirtPressure: pressure depends on a physical pressure source.

VirtHumidity: humidity depends on a physical humidity source.

VirtGas: gas depends on a physical gas source.

VirtWakeupTemperature: wakeup temperature depends on a physical temp source.

VirtWakeupPressure:
VirtWakeupHumidity:

wakeup pressure depends on a physical pressure source.
wakeup humidity depends on a physical humidity source.

Link VirtAltitude (Driver ID: 123) into the Bosch_Shuttle3_BHI360_BMM150_BME680.fw

Figure 16: Modifying the board configuration file

6.6 Modifying the SDK configuration file

In order to build a firmware that contains the VirtAltitude virtual driver for the target board configuration the
common/config.7189_di03_rtos_bhi360.cmake needs to be modified as shown below.

set (BOARDS

Bosch Shuttle3 BHI360

Bosch _Shuttle3 BHI360 turbo
Bosch Shuttle3 BHI360 BMM150

Bosch_Shuttle3 BHI360 BMM150 BME680

Set(ENABLED_DRIVERS
VirtBSXLeanDeviceOrientation variable.
VirtBSXCustomAccelDataSource

VirtAltitude

#Example Injection driver

AccellInject
${DRIVERS NO SOURCE}

Add
Bosch_Shuttle3 BHI360_BMM150_ BMEG680 to
the BOARDS variable.

Add VirtAltitude to the ENABLED DRIVERS

Figure 17: Modifying the SDK configuration file

6.7 Build the custom firmware

As described in Chapter 2 for Windows and Chapter 3 for Linux system, trigger the respective build.

The custom firmware is now available in release/gccfw as Bosch_Shuttle3_BHI360_BMM150_BME680.fw. Like with the
reference firmware, you can run the bhy2cli like below to load the firmware and view the lean orientation sensor’s output

using the generic type of handle.

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

24

$ bhy2cli -a 161:"Altitude":4:s32 -b release\fw\Bosch_Shuttle3_ BHI360_BMM150_BME680.fw -c

161:1

6.8 Altitude example

With new virtual sensor drivers in the firmware, a new sensor data parser should also be added to the host. An example of
the virtual sensor VirtAltitude is provided separately.

The virtual altitude sensor’s output unit is in centimeters.

For information on how to verify and evaluate the BHI360’s virtual sensors, refer to the BHI360-BHI380 Evaluation Setup

Guide.

typedef struct {
SInt32 altitude;

} __attribute__ ((packed)) output_t;

Here defines VirtAltitude output data as 4 bytes, so HOST
side should parse altitude data into 4 bvtes.

Figure 18: Altitude output data structure

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

25

7 Integrating a library and applying it to the custom sensor driver

This chapter describes how to integrate a library and use it in a driver. The library can be found under libs/template and the
driver under drivers_custom/VirtintegrateLib Template. For information on the development of a custom driver, refer to
Chapter 5 and 6.

7.1 Library directory structure

The library directory and its files must be in the libs directory of the SDK. The directory name should indicate the library
name, for example, libs/template. Table 6 lists the contents of the library directory.

Table 6: Library directory content

Source in Library Directory Description

CMakelLists.txt Build description of the library
template.sdk.cmake CMake file of the library
libtemplate.a Library file

includes Header files directory of the library

7.2 Implementing a sensor driver that uses the library

For implementing a sensor driver, the contents of the driver directory are shown in Table 7.

Table 7: Driver directory content

Source in Library Directory Description
CMakelLists.txt Build description of the driver
VirtintegrateLib Template.c Driver file

Content of CMakelLists.txt. Note the includes required.

SET (DRIVER ID 111)

get filename component (DRIVER KEY ${CMAKE CURRENT LIST DIR} NAME)
project (${DRIVER KEY} C)

FILE (GLOB SOURCES "*.c")

include directories(../../libs/template/includes/)

add definitions ("-DDESCRIPTOR NAME=virt ${DRIVER KEY} desc")

ADD ARC_DRIVER (${DRIVER KEY} ${DRIVER ID} ${SOURCES})

Figure 19: CMakelLists.txt

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

7.3 Modifying the board configuration file

To build a firmware that contains library and driver, the board configuration file needs modification.

Using the boards/Bosch_Shuttle3_BHI360.cfg as reference.

#Virtual Drivers,maxRate

111, -1.000000 #VirtintegrateLibTemplate: an example for integrate library

240, -1.000000 # VirtBSX: BSX depends on a programatic trigger source.

241, 400.000000 # VirtBSXAccel: accelerometer corrected data depends on VirtBSX.
209, 400.000000 # VirtBSXAccelOffset: accelerometer offset data depends on VirtBSX.

Figure 20: Modifying the board configuration file

7.4 Modifying the SDK configuration file

To build a firmware that contains library and driver, the SDK configuration file needs modification.

SDK configuration file common/config.7189_di03_rtos_bhi360.cmake

SET(BUILD_LIBS
${EXPORT_LIB_SOURCE}
${EXPORT_LIB_BINARIES}
DMA
SensorlInterfacelnit
SensorinterfaceRAM
DMAUnitTests
HIDUnitTests
HostInterface StreamingRAM

BSXSupport
OscTrim
SensorCalibration
Outerloop
template

libraries linked to standard board images

set(BOARDS_LIBS
MetawareDouble
MetawarePrintf
template

set(ENABLED_DRIVERS
VirtIntegrateLibTemplate

Example Injection driver
Accellnject

${DRIVERS_NO_SOURCE}

Figure 21: Modifying the SDK configuration file

26

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

27

7.5 Build the custom firmware

As described in Chapter 2 for Windows and Chapter 3 for Linux system, trigger the respective build. Then you can test the
driver in the same way as described in Chapter 6.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

28

8 Glossary

8.1 Virtual Sensor

A Virtual Sensor is a term used to identify the output of one or more algorithms. This output is available in the FIFO and
can be identified and referenced by the host of the BHI360(BHI380) using a Sensor ID.

8.2 DriverID

A virtual sensor driver is responsible for implementing the interface between the Software Framework and the algorithm,
among other tasks. Each driver has a unique ID in the SDK which is referred to as the Driver ID. This Driver ID is used to
select which driver can be included into a firmware build.

8.3 SensorlID

The Sensor ID is a unique identifier for a Virtual sensor. This Sensor ID is defined as an 8-bit unsigned integer value. A list
of all Virtual sensors and their corresponding sensor IDs also known as a FIFO event IDs are described in the datasheet in
the table Overview of FIFO Event IDs. The Sensor ID is defined as part of the driver’s descriptor.

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

9 Legal disclaimer
i. Engineering samples

Engineering Samples are marked with an asterisk (*) or (). Samples may vary from the valid technical specifications
of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for
use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way
replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The
Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

ii. Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the
parameters of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-
critical systems are those for which a malfunction is expected to lead to bodily harm, death or severe property
damage. In addition, they shall not be used directly or indirectly for military purposes (including but not limited to
nuclear, chemical or biological proliferation of weapons or development of missile technology), nuclear power, deep
sea or space applications (including but not limited to satellite technology).

The resale and/or use of Bosch Sensortec products are at the purchaser’s own risk and his own responsibility. The
examination of fitness for the intended use is the sole responsibility of the purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered
by the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for
all costs in connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to
product safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

iii. Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding
the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party.
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.
They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights
or copyrights or regarding functionality, performance or error has been made.

29

Modifications reserved |Data subject to change without notice | Printed in Germany Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

30

10 Document history

Rev. No ‘ Chapter Description of modification/changes

1.0 All Main release 2020-02-04
1.1 All Updated references 2020-02-24
1.2 All Added Glossary 2020-04-24
1.3 All Updated bhy2cli command formats 2020-05-18
1.4 5.9 Updated bhy2cli command to enable lean orientation 2021-10-20
1.5 2.1;2.3; 3.1 Update compiler version number 2023-04-18

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

Bosch Sensortec GmbH
Gerhard-Kindler-StraBBe 9
72770 Reutlingen / Germany

www.bosch-sensortec.com

Modifications reserved

Preliminary - specifications subject to change without notice
Document number: BST-BHI360-BHI380-AN000-05
Revision_1.5

Modifications reserved |Data subject to change without notice | Printed in Germany

Document number: BST-BHI360_BHI380-AN000-05 Revision_1.5

http://www.bosch-sensortec.com/

	1 Introduction to the SDK
	2 Setup in Windows
	2.1 Installing the compiler and support tools
	2.2 Installing the SDK
	2.3 Importing the SDK into Eclipse

	3 Setup in Linux
	3.1 Installing the ARC GNU toolchain and support tools
	3.2 Installing the SDK in Linux

	4 Building the SDK and loading firmware into the BHI360 (BHI380)
	5 Adding a BSX based new custom virtual driver
	5.1 Driver directory structure
	5.2 Writing driver code
	5.3 Selecting a driver ID
	5.4 Driver CMakeLists.txt File
	5.5 Brief introduction to the board configuration file
	5.6 Modifying the board configuration file
	5.7 Brief introduction to the SDK configuration file
	5.8 Modifying the SDK configuration file
	5.9 Building the custom firmware
	5.10 Lean orientation example

	6 Adding a non-Bosch Sensortec Fusion Library related new custom virtual driver
	6.1 Driver directory structure
	6.2 Writing driver code
	6.3 Selecting a driver ID
	6.4 Driver CMakeLists.txt file
	6.5 Modifying the board configuration file
	6.6 Modifying the SDK configuration file
	6.7 Build the custom firmware
	6.8 Altitude example

	7 Integrating a library and applying it to the custom sensor driver
	7.1 Library directory structure
	7.2 Implementing a sensor driver that uses the library
	7.3 Modifying the board configuration file
	7.4 Modifying the SDK configuration file
	7.5 Build the custom firmware

	8 Glossary
	8.1 Virtual Sensor
	8.2 Driver ID
	8.3 Sensor ID

	9 Legal disclaimer
	10 Document history

