
1

 BHI3xx SDK Quick Start Guide
Document revision 2.0

Document release date May 28, 2025

Document number BST-BHI3xx-AN000-06
 Technical reference code(s) 0 273 141 367 0 273 141 392

Notes Data and descriptions in this document are subject to change without
notice. Product photos and pictures are for illustration purposes only
and may differ from the real product appearance.

BHI3xx
Ultra-low power, high performance, programmable
Smart Sensor with integrated IMU

2

Table of Contents
1 Introduction to the SDK .. 6

2 Setup in Windows ... 6

2.1 Installing the compiler and support tools ... 6
2.2 Installing the SDK .. 6
2.3 Importing the SDK into Eclipse .. 7

3 Setup in Linux ... 10

3.1 Installing the ARC GNU toolchain and support tools .. 10
3.2 Installing the SDK in Linux ... 11

4 Building the SDK and loading firmware into the BHI360 (BHI380/BHI385) ... 12

5 Adding a BSX based new custom virtual driver .. 15

5.1 Driver directory structure ... 15
5.2 Writing driver code .. 15
5.3 Add the new sensor to down-sampling list .. 16
5.4 Selecting a driver ID .. 17
5.5 Driver CMakeLists.txt File ... 17
5.6 Brief introduction to the board configuration file .. 17
5.7 Modifying the board configuration file .. 19
5.8 Brief introduction to the SDK configuration file ... 20
5.9 Modifying the SDK configuration file .. 21
5.10 Building the custom firmware ... 21
5.11 Lean orientation example ... 22

6 Adding a non-Bosch Sensortec Fusion Library related new custom virtual driver .. 23

6.1 Driver directory structure ... 23
6.2 Writing driver code .. 23
6.3 Selecting a driver ID .. 25
6.4 Driver CMakeLists.txt file .. 25
6.5 Modifying the board configuration file .. 26
6.6 Modifying the SDK configuration file .. 26
6.7 Build the custom firmware .. 26
6.8 Altitude example .. 27

7 Integrating a library and applying it to the custom sensor driver ... 28

7.1 Library directory structure .. 28
7.2 Implementing a sensor driver that uses the library ... 28
7.3 Modifying the board configuration file .. 29
7.4 Modifying the SDK configuration file .. 29
7.5 Build the custom firmware .. 30

8 Glossary ... 31

8.1 Virtual Sensor... 31
8.2 Driver ID .. 31
8.3 Sensor ID .. 31

3

9 Legal disclaimer .. 32

10 Document history ... 33

4

List of Figures
Figure 1: BHI360 SDK installer ... 7
Figure 2: Installation destination directory .. 7
Figure 3: Eclipse workspace prompt ... 8
Figure 4: Eclipse New Project Settings ... 8
Figure 5: Configuring the build trigger ... 9
Figure 6: Configuring the build trigger’s arguments .. 9
Figure 7: GNU toolchain releases download page ... 10
Figure 8: Architecture of physical and virtual drivers .. 15
Figure 9: Driver descriptor overview ... 16
Figure 10: Driver CMakeLists.txt ... 17
Figure 11: Board configuration file overview ... 18
Figure 12: Modifying the board configuration file .. 19
Figure 13: Overview of the SDK configuration file .. 20
Figure 14: Modifying the SDK configuration file .. 21
Figure 15: Driver descriptor overview ... 24
Figure 16: Driver CMakeLists.txt ... 25
Figure 17: Modifying the board configuration file .. 26
Figure 18: Modifying the SDK configuration file .. 26
Figure 19: Altitude output data structure ... 27
Figure 20: CMakeLists.txt ... 28
Figure 21: Modifying the board configuration file ... 29
Figure 22: Modifying the SDK configuration file ... 29

List of Tables
Table 1: Pre-build SDK directory structure in Windows .. 10
Table 2: Pre-build SDK directory structure in Linux .. 11
Table 3: Driver directory content ... 15
Table 4: sif and bus options .. 19
Table 5: Driver directory content ... 23
Table 6: Library directory content ... 28
Table 7: Driver directory content ... 28

5

Abbreviations
BST Bosch Sensortec

BSX Bosch Sensortec Fusion Library

FIFO First In First Out

GCC GNU Compiler Collection

RAM Random Access Memory

SDK Software Development Kit

USB Universal Serial Bus

TRNG True Random Number Generator

RDRAND Read Random

6

1 Introduction to the SDK
This document briefly describes the process of developing firmware for the BHI360, BHI380 and BHI385. It provides
instructions on how to

▶ set up the development environment
▶ build the SDK
▶ get started with custom configuration files

For more details about hardware configuration, refer to BHI360 Datasheet, BHI380 Datasheet and BHI385 Datasheet.
For more details about developing new drivers, refer to the following manual and user guide:

▶ BHI3xx Programmer’s Manual
▶ BHI3xx Evaluation Setup Guide

The BHI360 (BHI380/BHI385) SDK can be used to develop a custom firmware image. The customization includes

▶ modifying the board configuration
▶ changing the mapping of pins
▶ changing the device orientation
▶ allocating memory to the FIFO
▶ creating custom drivers which can run algorithms or other tasks
▶ data injection for processor in the loop verification

The BHI360 firmware built by using the BHI360 SDK can be downloaded to the BHI360’s RAM.
The BHI380 firmware built by using the BHI380 SDK can be downloaded to the BHI380’s RAM.
The BHI385 firmware built by using the BHI385 SDK can be downloaded to the BHI385’s RAM.

For more details, refer to BHI3xx Programmer’s Manual.

2 Setup in Windows
This chapter describes how to install the required tools in Windows. The BHI360 (BHI380/BHI385) SDK supports two
toolchains: ARC GNU toolchain and Synopsys Metaware. This guide focuses on how to build the SDK with the ARC GNU
toolchain. Since the SDK generates signed firmware images and the signing tool requires the True Random Number
Generator feature of the CPU to generate a valid signature, the CPU used to build the SDK must support the RDRAND
instruction.

2.1 Installing the compiler and support tools

The GNU Toolchain for ARC Processors can be downloaded from the Synopsys Github Website. Download the file
“arc_gnu_2022.09_ide_win_install.exe” or newer and run this setup installer executable. This will primarily install the
Eclipse IDE and the ARC GNU Compiler.

Please download the latest ninja tool from Ninja Release Website, extract ninja.exe from ninja Windows package and
replace the old one at win64/bin under BHI360 (BHI380/BHI385) SDK root path.

2.2 Installing the SDK

For Windows system, an SDK installer is provided. To install the SDK, do the following (take BHI360 SDK installation as an
example):

1. Execute the BHI360_SDK_V1.0.6_Install.exe or newer, accept the license agreement and click Next, as shown in
Figure 1.

https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
https://github.com/ninja-build/ninja/releases

7

Figure 1: BHI360 SDK installer

2. Select the destination location for the SDK.

Then in the SDK destination directory, “BHI360_SDK_VX. Y. Z” is created.

Figure 2: Installation destination directory

2.3 Importing the SDK into Eclipse

1. Set up Eclipse.
a. Run the Eclipse IDE by clicking on its shortcut on the Desktop, which should be generically named “ARC

GNU IDE YYYY.MM(-rcN) Eclipse”. For example, “ARC GNU IDE 2022.09 Eclipse”.
b. During the first launch, you will be prompted to select a workspace. The default directory is an empty directory

that stores multiple projects. You can select your preferred workspace directory.

8

2. Import the BHI360 SDK as a project.

a. In the Eclipse IDE, go to File > New > Makefile Project with Existing Code.
b. In the prompt, type a project name, for example, as shown in the figure below. Select the SDK directory,

choose <none> for Toolchain for Indexer Settings, and then click Finish.

c. If the Welcome tab is open, close it to reveal the Project Explorer.
3. Link the project build to the batch script that builds the firmware.

a. In Windows, the building of the firmware is managed by a batch script named build.bat which can be found
in the root of the SDK directory.

b. Right-click on the BHI360_SDK project and select Properties.

Figure 3: Eclipse workspace prompt

Figure 4: Eclipse New Project Settings

9

c. Under C/C++ Build / Builder settings, deselect Use default build command and refer the image for selecting

the build trigger. Click Apply.

d. Under the C/C++ Build / Behavior, deselect Clean and remove the command all from the Build behavior, as
shown in the figure below. Click Apply and Close.

e. Click on the build icon . This will run build.bat and the progress is visible in the console located at the
bottom.

4. Locate the built firmware.
a. The firmware build can be found under release/gccfw in the root directory of the SDK. If the firmware is built

by Metaware rather than ARC GNU toolchain, it can be found under release/fw instead.

Figure 5: Configuring the build trigger

Figure 6: Configuring the build trigger’s arguments

10

Table 1: Pre-build SDK directory structure in Windows

SDK File/Directory Description

apps Directory which contains the source code for applications running outside the
sensor framework

boards Configuration files for the supported development boards and sensors
cmake CMake files used to build the SDK
common Source code for initialization code and reference header files
docs SDK documentation
drivers Source codes of sensor drivers from Bosch Sensortec
drivers_custom Source codes of additional custom drivers
gdb Support files for using gdb
kernel Exported symbols for kernel-mode firmware
libs Linkable binary image and header files for API libraries

user Entry code for user-mode firmware, source code for custom user-mode RAM
patches

win64 Executable image manipulation utilities, command line interface
build.bat Shell script used to set up build directory and build the specified target

3 Setup in Linux

3.1 Installing the ARC GNU toolchain and support tools

To get started, the following system requirements must be met:
▶ 64-bit Linux operating system (Ubuntu 14.04 LTS or later)
▶ At least 1.1 GB of free disk space

Before the SDK can be used, ARC GNU toolchain, CMake, and other necessary dependencies must be installed.
The operations in this guide have been verified on Ubuntu 14.04 LTS and 16.04 LTS.

1. Download the ARC GNU toolchain.
The ARC GNU toolchain releases are available on the Synopsys Github Website. A pre-built toolchain that supports
elf32 little-endian hosts is required.
In this example, the 2022.09 release is used. This release can be downloaded from the same download page as the
previous releases.
The right installation package to download is “arc_gnu_2022.09_prebuilt_elf32_le_linux_install.tar.gz”.

Figure 7: GNU toolchain releases download page

https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases

11

2. Install the GNU toolchain.
a. Run the following commands to extract the GNU toolchain installation package:

b. Run the following commands to verify the GNU toolchain has been installed successfully:

c. Update the PATH variable to include

 “opt/arc_gcc/arc_gnu_2022.09_prebuilt_elf32_le_linux_install/bin/”. This can be done by modifying the shell
start-up script as appropriate. For example, edit “/etc/profile” with the following command.

d. Add the path to the file by adding the following line.

3. Install the CMake and other dependencies.
a. To install the CMake, run the following commands:

b. To install the other dependencies or tools if necessary, run the following commands.

c. It is highly recommended to install ninja to speed up the build process by parallel building.

3.2 Installing the SDK in Linux

The SDK is released as an installer “BHI360_SDK_VX.Y.Z_Install.sh”.

Take BHI360 SDK V1.0.6 as an example, to make the installer executable, run the following command:

Bosch Sensortec License must be accepted by typing yes in the command line prompt. Then, the installer prompts to move
to the preferred directory. The default installation directory is “${HOME}/Bosch_Sensortec_Fuser2_SDK”.

The SDK has the directory structure as shown in Table 2.

Table 2: Pre-build SDK directory structure in Linux

SDK File/Directory Description
apps Directory that contains the source code for applications running outside the sensor

framework
boards Configuration files for the supported development boards and sensors
cmake CMake files used to build the SDK
common Source code for initialization code and reference header files
docs SDK documentation
drivers Source codes of sensor drivers from Bosch Sensortec

$ tar -xvf arc_gnu_2022.09_prebuilt_elf32_le_linux_install.tar.gz
$ sudo mkdir -p /opt/arc_gcc
$ sudo mv arc_gnu_2022.09_prebuilt_elf32_le_linux_install /opt/arc_gcc

$ cd /opt/arc_gcc/arc_gnu_2022.09_prebuilt_elf32_le_linux_install/bin/
$./arc-elf32-gcc -dumpversion

$ sudo nano /etc/profile

export PATH=$PATH:/opt/arc_gcc/arc_gnu_2022.09_prebuilt_elf32_le_linux_install/bin

$ sudo apt-get install cmake
$ cmake --version

$ sudo apt-get install libelf-dev
$ sudo apt-get install g++
$ sudo apt-get install lib32stdc++6

$ sudo apt-get install ninja-build

$./BHI360_SDK_V1.0.6_Install.sh

12

4 Importing the SDK into Visual Studio Code
▶ Download: Download the install package from the official Visual Studio Code website: https://code.visualstudio.com/
▶ Installation the VS code on your computer.
▶ Install Extensions: C/C++, C/C++ Extension Pack, CMake

1. Export SDK to VS Code

• Open VS Code
• File → Open Folder... (Chose the SDK install dictionary and the SDK structure is shown in below, here take

BHI360_SDK_1.1.18.2 in Windows as an example)

SDK File/Directory Description
drivers_custom Source codes of additional custom drivers
gdb Support files for using gdb
kernel Exported symbols for kernel-mode firmware
libs Linkable binary image and header files for API libraries
user Entry code for user-mode firmware, source code for custom user-mode RAM

patches
utils Executable image manipulation utilities, command line interface
build.sh Shell script used to set up a build directory and build the specified SDK

Figure 8: SDK structure in VS code

13

The description for the SDK structure is shown in Table 2.

2. Build the SDK
• Terminal → New Terminal
Go to the root folder of BHI360 SDK, build the SDK with running the command

 in Windows

 in Linux

3. Locate the Firmware

For the BHI360, the image for RAM is generated. With successive build triggers, all previously generated files
under the build and release directories are removed and new firmware files are generated under the
release/gccfw or release/fw folder.

The generated “*.fw” file can be verified by using the bhy2cli tool. The bhy2cli is a command line tool based on the
COINES tool that interfaces with the BHI360 through Bosch Sensortec’s application board. The tool can be used to
load and run standard and custom firmware images among other features.

For example, running the command:

Loads the firmware file Bosch_Shuttle3_BHI360_BMM150.fw for the board configuration
Bosch_Shuttle3_BHI360_BMM150.cfg and switches on streaming of sensor ID 34 at 25Hz to the terminal. Refer to
BHI360-BHI380 Evaluation Setup Guide for more information on building the bhy2cli tool.

5 Building the SDK and loading firmware into the BHI360 (BHI380/BHI385)
In Windows, clicking on the build icon in the Eclipse IDE or executing the build.bat script will trigger the build process.
In Linux, run the build script in its root:

build and release directories are created after the build script is executed. If both the ARC GNU compiler and the Metaware
compiler are available on the path, the Metaware compiler is used. To override this behavior and force the use of the ARC
GNU compiler, add the option “USE_GCC” as an argument to the build script.

$.\build.bat USE_GCC

$./build.sh USE_GCC

$ bhy2cli –b release\fw\Bosch_Shuttle3_BHI360_BMM150.fw –c 34:25

$./build.sh

$./build.sh USE_GCC

$./build.bat USE_GCC

Figure 9: Compiling in Windows

14

For the BHI360 (BHI380/BHI385), one image for RAM is generated. With successive build triggers, all previously generated
files under the build and release directories are removed and new firmware files are generated under the release/gccfw or
release/fw folder.

The generated “*.fw” file can be verified by using the bhy2cli tool. The bhy2cli is a command line tool based on the COINES
tool that interfaces with the BHI360 (BHI380/BHI385) through Bosch Sensortec’s application board. The tool can be used
to load and run standard and custom firmware images among other features.

For example, running

loads the firmware file Bosch_Shuttle3_BHI360_BMM150.fw for the board configuration
Bosch_Shuttle3_BHI360_BMM150.cfg and switches on streaming of the sensor ID 34 at 25Hz to the terminal. Refer to
BHI3xx Evaluation Setup Guide for more information on using the bhy2cli tool.

$ bhy2cli –b release\fw\Bosch_Shuttle3_BHI360_BMM150.fw –c 34:25

15

6 Adding a BSX based new custom virtual driver
In order to demonstrate how one can add a custom driver to the SDK, two drivers, VirtBSXLeanDeviceOrientation and
VirtBSXCustomCorrectedAccelDataSource, have already been included in the SDK as examples but have not been used
in any of the firmware images.

Both VirtBSXLeanDeviceOrientation and VirtBSXCustomCorrectedAccelDataSource are in the drivers_custom directory of
the SDK. VirtBSXCustomAccelDataSource receives accelerometer data from the Bosch Sensortec Fusion Library but does
not send it to the host. Instead, it triggers VirtBSXLeanDeviceOrientation which receives the data, processes it, and stores
the processed data in the requested FIFO.

For more information on how to develop a new physical sensor driver or virtual sensor driver in the SDK, refer to BHI3xx
Programmer’s Manual.

6.1 Driver directory structure

The sensor driver code must be in its own directory under the drivers_custom directory of the SDK. The directory name
should indicate the device name and driver type, for example, VirtBSXLeanDeviceOrientation.

Table 3: Driver directory content

File in Driver Directory Description

CMakeLists.txt Build description of the driver
VirtBSXLeanDeviceOrientation.c Source code of the driver
Header file Header file typically defining register locations and other

constants for the driver if needed

6.2 Writing driver code

The dependency between the two virtual sensors is described below.

ACC
SPI

Host

Virtual
Driver
BSX4

Sensor
Fusion

FUSER2

Wake-
up

FIFO

Non-
wake-

up
FIFO

Phys. Drv.
ACC

Phys. Drv.
GYR

Phys. Drv.

MAG

Data Source
Virtual Drivers

Custom
Algorithm

Virtual
Drivers

GYR

MAG

BHI3xy

IMU
I2C

Virt
drvs.

Virt
drvs.

Wake-Up Output Gates Non-Wake-Up Output Gates

Custom Output Gates

Phys. Drv.
Baro

Baro I2C

Figure 10: Architecture of physical and virtual drivers

16

For more detailed and complete information on how to program sensor drivers, refer to Chapter 4.8.4 of BHI3xx
Programmer’s Manual.

6.3 Add the new sensor to down-sampling list

Add the new sensor, which relies on BSX ouptuts, to user/RamPatches/custom_virtual_sensor_support.c. More details can
be referred in Chapter 4.8.4 of BHI3xy Programmer’s Manual.

VirtBSXCustomCorrectedAccelDataSource is the
data source of VirtBSXLeanDeviceOrientation.

 “hidden =TRUE” means the sensor is not visible to host,
and it only provides data source.

VIRTUAL_SENSOR_DESCRIPTOR VirtualSensorDescriptor
descriptor_virt_bsx_custom_corrected_accel_data_source
 = {
 .physicalSource = {
 .sensor = {
 .type = {
 .value = BSX_INPUT_ID_ACCELERATION,
 .flags = DRIVER_TYPE_PHYSICAL_FLAG,
 },
 },
 },

 .info = {
 .id = DRIVER_ID,
 .version = DRIVER_REV,
 },

 .type = {
 .value =
SENSOR_TYPE_BSX(BSX_CUSTOM_ID_ACCELERATION_CORRECTED),
 .flags = DRIVER_TYPE_VIRTUAL_FLAG,
 .wakeup_ap = FALSE,
 .hidden = TRUE,
 },
 .expansionData = {
 .f32 = OUTPUT_SCALING_FACTOR,
 },

 .maxRate = 800.0F,
 .minRate = 1.5625F,

 .outputPacketSize = sizeof(output_3axis_t),
 .priority = PRIORITY_2,

 .initialize = NULL,
 .handle_sensor_data = bsx_custom_data_collector,
};

VIRTUAL_SENSOR_DESCRIPTOR VirtualSensorDescriptor
descriptor_virt_bsx_lean_device_orientation = {
#ifdef USE_BSXSAM
 .triggerSource = {
 .sensor = {
 .type = {
 .value =
SENSOR_TYPE_BSX(BSX_CUSTOM_ID_ACCELERATION_CORRECTED)
,
 .flags = DRIVER_TYPE_VIRTUAL_FLAG,
 },
 },
 },
#endif
 .info = {
 .id = DRIVER_ID,
 .version = DRIVER_REV,
 },

 .type = {
 .value =

SENSOR_TYPE_BSX_LEAN_DEVICE_ORIENTATION
,
 .flags = DRIVER_TYPE_VIRTUAL_FLAG,
 .wakeup_ap = FALSE,
 },

 .maxRate = 800.0F,
 .minRate = 1.5625F,

 .outputPacketSize = sizeof(output_t),
 .priority = PRIORITY_2,

 .initialize = ldo_initialize,
 .handle_sensor_data = ldo_handle_sensor_data,
 .mode_changed = ldo_on_power_mode_changed,
};

The Sensor ID is made
visible to the host.

Figure 11: Driver descriptor overview

17

6.4 Selecting a driver ID

To add a new virtual sensor driver, the first step is to select the available driver ID for compilation. Unless the driver to be
developed is already included in the SDK, you may choose any unused 8-bit number. There is a python script under the
root directory of the SDK. Running it will show the existing driver names and associated driver IDs. Using this script will
need an existing installation of Python.

In this excerpt, the driver IDs 131 and 132 in the Driver CMakeLists.txt file (See section 5.4) are selected. Each driver has
a unique driver ID.

6.5 Driver CMakeLists.txt File

The below mentioned CMakeLists.txt file automatically pulls in the sources from each driver. It is used by the build system
at link time to associate the driver ID listed with a driver’s object file. More driver IDs can be defined in the same way.
Usually, you do not need to modify it.

Take drivers_custom/VirtBSXLeanDeviceOrientation/CMakeLists.txt for example:

6.6

$ python find_BHy3_driver_IDs.py

SET(DRIVER_ID 121)

get_filename_component(DRIVER_KEY ${CMAKE_CURRENT_LIST_DIR} NAME)

project(${DRIVER_KEY} C)

FILE(GLOB SOURCES "*.c")

IF(BUILDING_SDK)
include_directories(../../libs/BSXSupport/includes/
 ../../libs/BSX/includes/
 ../../user/RamPatches/)
ELSE()
include_directories(../../../libs/BSXSupport/includes/
 ../../../libs/BSX/includes/
 ../../../user/RamPatches/)
ENDIF()
ADD_ARC_DRIVER(${DRIVER_KEY} ${DRIVER_ID} ${SOURCES})

Figure 12: Driver CMakeLists.txt

https://www.python.org/

18

Brief introduction to the board configuration file

Board configuration files are used to specify the configuration for a firmware build. A board configuration file consists of a
global configuration section, a physical driver configuration section and a virtual driver configuration section. Lines can be
commented with a hash (#) and are commented until the end of the current line.

▶ Default configuration of GPIO pins
▶ Sensor interface configurations (SPI, I2C masters)
▶ Allocation of FIFO memory
▶ CPU speed: long run (20MHz) or turbo (50MHz)
▶ Building firmware for Host boot
▶ Configuration parameters for BSX fusion library
▶ List of physical drivers to be linked into the firmware file and their characteristics
▶ List of virtual drivers to be linked into the firmware file

All board configuration files are in the boards directory.

Take boards/Bosch_Shuttle3_BHI360_BMM150.cfg as an example:

#Global Configuration
stuffelf,13
irq,0
evcfg,0,0,0,0,0,0,0,0,0,0,0,0
#Pin, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27
pull, off, on, off, off, on, off, on, on, off, off, off, off, off, off, off, off, off, on, on, on,
on, off, on, off, on, off, off, off
gpio, hiz,
hiz, hiz, hiz
sif_cfg,1
hif_disable,0
fifo,50.00
wordsreq,0
turbo,0
rom,0
build_type,ram
rom_name,bosch_rom
hw,7189
version,0

#Any Accel+Any Gyro+BMM150Mag
config_list,libs/BSX/SolutionList/csvList_BHI360_IMU_BMM.txt

#Physical Drivers
#DriverID,Bus,Addr,GPIO,Cal0,Cal1,Cal2,Cal3,Cal4,Cal5,Cal6,Cal7,Cal8,Off0,Off1,Off2,maxRate,Range
11,i2c0,16,-, 0, 1, 0, 1, 0, 0, 0, 0,-1, 0, 0, 0, 50.000000, 0 #BMM150Mag on M2
26,spi0,25,2, 0, 1, 0,-1, 0, 0, 0, 0, 1, 0, 0, 0, 800.000000, 0 #BHI360Accel on SPI0
25,spi0,25,-, 0, 1, 0,-1, 0, 0, 0, 0, 1, 0, 0, 0, 800.000000, 0 #BHI360Gyro on SPI0

#Virtual Drivers,maxRate
240, -1.000000 # VirtBSX: BSX depends on a programatic trigger source.
241, 400.000000 # VirtBSXAccel: accelerometer corrected data depends on VirtBSX.
209, 400.000000 # VirtBSXAccelOffset: accelerometer offset data depends on VirtBSX.
205, 400.000000 # VirtBSXAccelPassthrough: accelerometer passthrough data depends on VirtBSX.
...

224, -1.000000 # VirtHangDetection: hang detector depends on a 25Hz timer.

sif_cfg is used to define the hardware connections.
See Table 4: sif and bus options
Here it is set as 1, which selects M1 as spi0, M2 as
i2c0, and M3 as i2c1.
For details about M1/M2/M3, refer to the
BHI360/BHI380/BHI385 Datasheet.

GPIO is used to define
the physical interrupt pin.
Here the accelerometer’s
interrupt pin is connected
to GPIO 2.
The magnetometer is
polled and hence not
interrupt pin is assigned
and hence set to “-“.

Physical sensor configuration
The magnetometer is connected over
the i2c0 bus, on the I2C address “16”.
The accelerometer and gyroscope are
connected over the spi0 bus, using
“GPIO25” as the chip select pin.

Each driver has a “CMakeLists.txt” file that contains the
“DRIVER_ID” defined.
These are the “DRIVER_IDs” included in the firmware.
New driver IDs can be added or removed as needed.

Accelerometer, Magnetometer and Gyroscope axis remapping matrix
values. For details refer to the BHI360/BHI380/BHI385 datasheet.

Figure 13: Board configuration file overview

 build_type is used to define the type of output
 firmware: all, ram, test.

19

Table 4: sif and bus options

sif M1 M2 M3
0 SPI0 SPI1 I2C1
1 SPI0 I2C0 I2C1
2 I2C0 SPI1 I2C1

For more details about the sif configuration, refer to BHI360/BHI380/BHI385 Datasheet. For details about the board
configuration file, refer to BHI3xx Programmer’s Manual.

6.7 Modifying the board configuration file

To add the VirtBSXLeanDeviceOrientation and VirtBSXCustomCorrectedAccelDataSource virtual sensors to the
Bosch_Shuttle3_BHI360_BMM150_Cus.fw, you must add a new configuration file
boards/Bosch_Shuttle3_BHI360_BMM150_Cus.cfg (take Bosch_Shuttle3_BHI360_BMM150.cfg as the reference) and add
the virtual drivers to the virtual sensor list in the respective “*.cfg” file as shown below.

…
#Virtual Drivers,maxRate
131, 800.000000 # VirtBSXCustomAccelDataSource: depends on a physical accelerometer.
121, 800.000000 # VirtBSXLeanDeviceOrientation: depends on a virtual BSX source.
240, -1.000000 # VirtBSX: BSX depends on a programatic trigger source.
241, 400.000000 # VirtBSXAccel: accelerometer corrected data depends on VirtBSX.
209, 400.000000 # VirtBSXAccelOffset: accelerometer offset data depends on VirtBSX.
205, 400.000000 # VirtBSXAccelPassthrough: accelerometer passthrough data depends on VirtBSX.
…

Link VirtBSXCustomCorrectedAccelDataSource (Driver ID: 131) and
VirtBSXLeanDeviceOrientation (Driver ID: 121) into the
Bosch_Shuttle3_BHI360_BMM150_Cus.fw

Figure 14: Modifying the board configuration file

20

6.8 Brief introduction to the SDK configuration file

In brief, all SDK generated firmware images include both the pre-built kernel image and user images. This configuration file
includes board configuration files, enabled drivers, libraries, etc.
The SDK has one configuration file common/config.7189_di03_rtos_bhi360.cmake, which can be edited as needed.

…
set(BOARDS
 Bosch_Shuttle3_BHI360
 Bosch_Shuttle3_BHI360_turbo
 Bosch_Shuttle3_BHI360_BMM150
 …
)
…

set(DRIVERS_NO_SOURCE
 BMM150Mag
 BHI360SigMotion
 …
 VirtBME680Humidity
 …
 VirtHangDetection
)

set(ENABLED_DRIVERS
 #Example Injection driver
 ${DRIVERS_NO_SOURCE}
)

…
set(RAM_PATCHES
 getBuildTime
 …
)

set(RAM_PATCHES_HEADERS
 custom_virtual_sensor_support
 …
)

The BOARDS variable describes which of
the target boards’ configurations are to be
built. When the “build.sh” or “build.bat”
script is executed, only the firmware for
those specific boards are built.

The DRIVERS_NO_SOURCE variable
describes which drivers (including physical
and virtual drivers) are already present as
library files in the SDK.

Drivers whose sources need to be built,
such as custom drivers, should be directly
added to the ENABLED DRIVERS variable.

Source and header files of ram patches that
need to be built should be directly added to
the RAM_PATCHES and
RAM_PATCHES_HEADERS variables.

Figure 15: Overview of the SDK configuration file

21

6.9 Modifying the SDK configuration file

To build a firmware that contains the reference custom drivers for the target board configuration,
common/config.7189_di03_rtos_bhi360.cmake needs to be modified as shown below.

6.10 Building the custom firmware

To build only a specific board configuration file, the name of the board can be passed as an argument. For example, in
Linux this would look like,

If more than one board needs to be built in a similar way, a semicolon is required between board names like below,

The build.bat file for Windows can accept similar arguments.

The custom firmware is now available under release/gccfw as Bosch_Shuttle3_BHI360_BMM150_Cus.fw. Like with the
reference firmware, you can use the bhy2cli like below to load the firmware and view the lean orientation sensor’s output
using the generic type of handle.

$./build.sh Bosch_Shuttle3_BHI360_BMM150_Cus

$./build.sh "Bosch_Shuttle3_BHI360_BMM150_Cus; Bosch_Shuttle3_BHI360"

set(BOARDS
 Bosch_Shuttle3_BHI360
 Bosch_Shuttle3_BHI360_turbo
 Bosch_Shuttle3_BHI360_BMM150
 …
 Bosch_Shuttle3_BHI360_BMM150_Cus
)
…
set(ENABLED_DRIVERS
 VirtBSXLeanDeviceOrientation
 VirtBSXCustomCorrectedAccelDataSource
 #Example Injection driver
 AccelInject
 ${DRIVERS_NO_SOURCE}
)
…
ram patches
set(RAM_PATCHES
 getBuildTime
 …
 custom_virtual_sensor_support
 bsx_virtual_sensor_support
 …
)
headers to be included
set(RAM_PATCHES_HEADERS
 custom_virtual_sensor_support

bsx_virtual_sensor_support
…

)

Add Bosch_Shuttle3_BHI360_BMM150_Cus
to the BOARDS variable.

Add VirtBSXLeanDeviceOrientation and
VirtBSXCustomCorrectedAccelDataSource to
the ENABLED_DRIVERS variable.

Make sure custom_virtual_sensor_support is
added to the RAM_PATCHES and
RAM_PATCHES_HEADERS variables.

Figure 16: Modifying the SDK configuration file

22

6.11 Lean orientation example

With the new custom virtual drivers inside the firmware, the host should also be able to configure the sensor ID and parse
sensor events from the FIFO.
The corresponding host side example of the virtual sensor VirtBSXLeanDeviceOrientation called “Lean Orientation” is
provided separately. Refer to BHI360-BHI380/5 Evaluation Setup Guide for more information on how to verify and evaluate
the aforementioned newly integrated virtual sensors.

$ bhy2cli -b release/fw/Bosch_Shuttle3_BHI360.fw -a 160:"Lean Orientation":2:c:c -c 160:1

23

7 Adding a non-Bosch Sensortec Fusion Library related new custom virtual
driver
This chapter takes VirtAltitude for example to describe how to add a non-Bosch Sensortec Fusion Library related new
custom virtual sensor driver. The steps are the same as in Chapter 5, except that some details vary depending on the
actual requirements.

VirtAltitude is in the drivers_custom directory. It creates custom altitude data and sends it to the respective FIFO.

For more information on how to develop a physical/virtual sensor driver in the SDK, refer to BHI3xx Programmer’s Manual.

7.1 Driver directory structure

The sensor driver code must be in its own directory in the drivers_custom directory of the SDK. The directory name should
reflect the device name and driver type, for example VirtAltitude.

Table 5: Driver directory content

File in Driver Directory Description

CMakeLists.txt Build description of the driver
VirtAltitude.c Source code of the driver
Header file Header file typically defining register locations and other constants for the driver if

needed

7.2 Writing driver code

Below is code snippets VirtAltitude driver in Figure 16, which explains its trigger source and how to exchange reference
sea level values with the host through the parameter interface.
For more information on how to program sensor drivers, refer to BHI3xx Programmer’s Manual.

24

…

#define DRIVER_REV (4u)
…

#define PARAM_PAGE_OPTIONAL_SDK (8)
#define OPTIONAL_SDK_PARAM_ALTITUDE_SEE_LEVEL (0x00)

bool optional_sdk_page_write_handler(uint8_t param, uint16_t length, uint8_t buffer[])
…

bool optional_sdk_page_read_handler(uint8_t param,uint16_t length, uint8_t buffer[], uint16_t *ret_length)
…

static SensorStatus virt_altitude_initialize_sensor(VirtualSensorDescriptor *self)
{
 (void) registerWriteParamHandler(PARAM_PAGE_OPTIONAL_SDK, optional_sdk_page_write_handler);
 (void) registerReadParamHandler(PARAM_PAGE_OPTIONAL_SDK, optional_sdk_page_read_handler);
 verbose("altitude initialize\n");
 return SensorOK;
}
…

VIRTUAL_SENSOR_DESCRIPTOR VirtualSensorDescriptor virt_altitude_descriptor =
{
 .triggerSource =
 {
 .sensor =
 {
 .type =
 {
 .value =

SENSOR_TYPE_INPUT_BMP_PRESSURE
,

 .flags = DRIVER_TYPE_PHYSICAL_FLAG,
 },
 },
 },

 .physicalSource =
 {
 .sensor =
 {
 .type =
 {
 .value = SENSOR_TYPE_INPUT_BMP_PRESSURE
,
 .flags = DRIVER_TYPE_PHYSICAL_FLAG,
 },
 },
 },

 .info =
 {
 .id = DRIVER_ID,
 .version = DRIVER_REV,
 },

 .type =
 {
 .value = SENSOR_TYPE_CUS_ALTITUDE
,
 .flags = DRIVER_TYPE_VIRTUAL_FLAG,
 .wakeup_ap = FALSE,
 .no_decimation = FALSE,
 .on_change = FALSE,
 },

 .outputPacketSize = sizeof(output_t),

Use the Parameter page 0x08, index 0x00 to set and get
the reference pressure at sea level. It is 4 bytes register to
contain an unsigned 32 bit value. Host can set and get this
reference pressure configuration in run-time to get accurate
altitude estimation.

VirtAltitude’s trigger source is physical pressure sensor.

VirtAltitude’s sensor ID is a visible ID, which means that
it is visible to the HOST.

The driver’s version number
is 4.

Figure 17: Driver descriptor overview

25

7.3 Selecting a driver ID

To add a new virtual sensor driver, the first step is to select the available virtual driver ID for compilation. Unless the driver
to be developed is already included in the SDK, you may choose any unused 8-bit number.
In this excerpt, the driver ID 123 in the CMakeLists.txt file is selected. Each driver has a unique driver ID.

7.4 Driver CMakeLists.txt file

The CMakeLists.txt file pulls in all the sources from the root directory of each driver. It is used by the build system while
linking to associate the driver ID listed with a driver’s object file. Additional driver IDs can be defined in the same way. This
generic file typically needs no modification.
Take drivers_custom/VirtAltitude/CMakeLists.txt for example:

SET(DRIVER_ID 123)
get_filename_component(DRIVER_KEY ${CMAKE_CURRENT_LIST_DIR} NAME)

project(${DRIVER_KEY} C)

FILE(GLOB SOURCES "*.c")

ADD_ARC_DRIVER(${DRIVER_KEY} ${DRIVER_ID} ${SOURCES})

Figure 18: Driver CMakeLists.txt

26

7.5 Modifying the board configuration file

The example below describes how to include VirtAltitude in Bosch_Shuttle3_BHI360_BMM150_BME688_IAQ.fw by editing
the existing configuration file “$SDK/boards/Bosch_Shuttle3_BHI360_BMM150_BME688_IAQ.cfg” as shown below.

7.6 Modifying the SDK configuration file

In order to build a firmware that contains the VirtAltitude virtual driver for the target board configuration the
common/config.7189_di03_rtos_bhi360.cmake needs to be modified as shown below.

7.7 Build the custom firmware

As described in Chapter 2 for Windows and Chapter 3 for Linux system, trigger the respective build.

The custom firmware is now available in release/gccfw as Bosch_Shuttle3_BHI360_BMM150_BME688_IAQs.fw. Like with
the reference firmware, you can run the bhy2cli like below to load the firmware and view the lean orientation sensor’s
output using the generic type of handle.

$ bhy2cli -a 161:"Altitude":4:s32 –b release\fw\Bosch_Shuttle3_BHI360_BMM150_BME688_IAQs.fw –
c 161:1

…
#Virtual Drivers,maxRate
217, -1.000000 # VirtTemperature: temperature depends on a physical temp source.
123, 16.000000 # VirtAltitude: depends on a physical pressure source.
184, -1.000000 # VirtPressure: pressure depends on a physical pressure source.
219, -1.000000 # VirtHumidity: humidity depends on a physical humidity source.
216, -1.000000 # VirtGas: gas depends on a physical gas source.
183, -1.000000 # VirtWakeupTemperature: wakeup temperature depends on a physical temp source.
218, -1.000000 # VirtWakeupPressure: wakeup pressure depends on a physical pressure source.
185, -1.000000 # VirtWakeupHumidity: wakeup humidity depends on a physical humidity source.

Link VirtAltitude (Driver ID: 123) into the Bosch_Shuttle3_BHI360_BMM150_BME688_IAQ.fw

Figure 19: Modifying the board configuration file

 set(BOARDS
 Bosch_Shuttle3_BHI360
 Bosch_Shuttle3_BHI360_turbo
 Bosch_Shuttle3_BHI360_BMM150
 …
 Bosch_Shuttle3_BHI360_BMM150_BME688_IAQ
)
…
set(ENABLED_DRIVERS
 VirtBSXLeanDeviceOrientation

VirtBSXCustomCorrectedAccelDataSource
VirtAltitude

 #Example Injection driver
 AccelInject
 ${DRIVERS_NO_SOURCE}
)

Add
Bosch_Shuttle3_BHI360_BMM150_BME688_I
AQ to the BOARDS variable.

Add VirtAltitude to the
ENABLED_DRIVERS variable.

Figure 20: Modifying the SDK configuration file

27

7.8 Altitude example

With new virtual sensor drivers in the firmware, a new sensor data parser should also be added to the host. An example of
the virtual sensor VirtAltitude is provided separately.
The virtual altitude sensor’s output unit is in centimeters.
For information on how to verify and evaluate the BHI360’s virtual sensors, refer to BHI3xx Evaluation Setup Guide.

typedef struct {
 SInt32 altitude;
} __attribute__ ((packed)) output_t;

Here defines VirtAltitude output data as 4 bytes, so HOST
side should parse altitude data into 4 bytes.

Figure 21: Altitude output data structure

28

8 Integrating a library and applying it to the custom sensor driver
This chapter describes how to integrate a library and use it in a driver. The library can be found under libs/template and the
driver under drivers_custom/VirtIntegrateLibTemplate. For information on the development of a custom driver, refer to
Chapter 5 and 6.

8.1 Library directory structure

The library directory and its files must be in the libs directory of the SDK. The directory name should indicate the library
name, for example, libs/template. Table 6 lists the contents of the library directory.

Table 6: Library directory content

Source in Library Directory Description

CMakeLists.txt Build description of the library
template.sdk.cmake CMake file of the library
libtemplate.a Library file
includes Header files directory of the library

8.2 Implementing a sensor driver that uses the library

For implementing a sensor driver, the contents of the driver directory are shown in Table 7.

Table 7: Driver directory content

Source in Library Directory Description

CMakeLists.txt Build description of the driver
VirtIntegrateLibTemplate.c Driver file

 Content of CMakeLists.txt. Note the includes required.

SET(DRIVER_ID 164)

get_filename_component(DRIVER_KEY ${CMAKE_CURRENT_LIST_DIR} NAME)

project(${DRIVER_KEY} C)

FILE(GLOB SOURCES "*.c")

IF(BUILDING_SDK)
include_directories(../../libs/template/includes/)
ELSE()
include_directories(../../../libs/template/includes/)

ENDIF()
add_definitions("-DDESCRIPTOR_NAME=virt_${DRIVER_KEY}_desc")

ADD_ARC_DRIVER(${DRIVER_KEY} ${DRIVER_ID} ${SOURCES})

Figure 22: CMakeLists.txt

29

8.3 Modifying the board configuration file

To build a firmware that contains library and driver, the board configuration file needs modification.

Using the boards/Bosch_Shuttle3_BHI360.cfg as reference.

8.4 Modifying the SDK configuration file

To build a firmware that contains library and driver, the SDK configuration file needs modification.

SDK configuration file common/config.7189_di03_rtos_bhi360.cmake

…..
SET(BUILD_LIBS
 ${EXPORT_LIB_SOURCE}
 ${EXPORT_LIB_BINARIES}
 DMA
 SensorInterfaceInit
 SensorInterfaceRAM
 DMAUnitTests
 HIDUnitTests
 HostInterfaceStreamingRAM

 BSXSupport
 OscTrim
 SensorCalibration
 Outerloop

template
)

…..
libraries linked to standard board images
set(BOARDS_LIBS
 MetawareDouble

MetawarePrintf
template

)
…

set(ENABLED_DRIVERS
 ….
 VirtIntegrateLibTemplate

Example Injection driver
 AccelInject

 ${DRIVERS_NO_SOURCE}
)
…..

Figure 24: Modifying the SDK configuration file

#Virtual Drivers,maxRate
164, -1.000000 #VirtIntegrateLibTemplate: an example for integrate library
240, -1.000000 # VirtBSX: BSX depends on a programatic trigger source.
241, 400.000000 # VirtBSXAccel: accelerometer corrected data depends on VirtBSX.
209, 400.000000 # VirtBSXAccelOffset: accelerometer offset data depends on VirtBSX.

Figure 23: Modifying the board configuration file

30

8.5 Build the custom firmware

As described in Chapter 2 for Windows and Chapter 3 for Linux system, trigger the respective build. Then you can test the
driver in the same way as described in Chapter 6.

31

9 Glossary

9.1 Virtual Sensor

A Virtual Sensor is a term used to identify the output of one or more algorithms. This output is available in the FIFO and
can be identified and referenced by the host of the BHI360(BHI380/BHI385) using a Sensor ID.

9.2 Driver ID

A virtual sensor driver is responsible for implementing the interface between the Software Framework and the algorithm,
among other tasks. Each driver has a unique ID in the SDK which is referred to as the Driver ID. This Driver ID is used to
select which driver can be included into a firmware build.

9.3 Sensor ID

The Sensor ID is a unique identifier for a Virtual sensor. This Sensor ID is defined as an 8-bit unsigned integer value. A list
of all Virtual sensors and their corresponding sensor IDs also known as a FIFO event IDs are described in the datasheet in
the table Overview of FIFO Event IDs. The Sensor ID is defined as part of the driver’s descriptor.

32

10 Legal disclaimer

i. Engineering samples

Engineering Samples are marked with an asterisk (*) or (e). Samples may vary from the valid technical specifications
of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for
use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way
replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The
Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

ii. Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the
parameters of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-
critical systems are those for which a malfunction is expected to lead to bodily harm, death or severe property
damage. In addition, they shall not be used directly or indirectly for military purposes (including but not limited to
nuclear, chemical or biological proliferation of weapons or development of missile technology), nuclear power, deep
sea or space applications (including but not limited to satellite technology).

The resale and/or use of Bosch Sensortec products are at the purchaser’s own risk and his own responsibility. The
examination of fitness for the intended use is the sole responsibility of the purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered
by the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for
all costs in connection with such claims.

The purchaser accepts the responsibility to monitor the market for the purchased products, particularly with regard to
product safety, and to inform Bosch Sensortec without delay of all safety-critical incidents.

iii. Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding
the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party.
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.
They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights
or copyrights or regarding functionality, performance or error has been made.

33

11 Document history
Rev. No Chapter Description of modification/changes Date
1.0 All Main release 2020-02-04
1.1 All Updated references 2020-02-24
1.2 All Added Glossary 2020-04-24
1.3 All Updated bhy2cli command formats 2020-05-18
1.4 5.9 Updated bhy2cli command to enable lean orientation 2021-10-20
1.5 2.1; 2.3; 3.1 Update compiler version number 2023-04-18
1.6 5.11;6.8 Review the examples 2024-05-10
1.7 2.3 Update contents and pictures 2024-08-24
1.8 All Add BHI385 contents 2024-12-31
1.9 5, 6, 7 Update contents 2025-04-15
2.0 All Update contents 2025-05-28

34

Bosch Sensortec GmbH
Gerhard-Kindler-Straße 9
72770 Reutlingen / Germany

www.bosch-sensortec.com

Modifications reserved
Preliminary - specifications subject to change without notice
Document number: BST-BHI3xx-AN000-06
Revision_2.0

http://www.bosch-sensortec.com/

	1 Introduction to the SDK
	2 Setup in Windows
	2.1 Installing the compiler and support tools
	2.2 Installing the SDK
	2.3 Importing the SDK into Eclipse

	3 Setup in Linux
	3.1 Installing the ARC GNU toolchain and support tools
	3.2 Installing the SDK in Linux

	4 Importing the SDK into Visual Studio Code
	5 Building the SDK and loading firmware into the BHI360 (BHI380/BHI385)
	6 Adding a BSX based new custom virtual driver
	6.1 Driver directory structure
	6.2 Writing driver code
	6.3 Add the new sensor to down-sampling list
	6.4 Selecting a driver ID
	6.5 Driver CMakeLists.txt File
	6.6 Brief introduction to the board configuration file
	6.7 Modifying the board configuration file
	6.8 Brief introduction to the SDK configuration file
	6.9 Modifying the SDK configuration file
	6.10 Building the custom firmware
	6.11 Lean orientation example

	7 Adding a non-Bosch Sensortec Fusion Library related new custom virtual driver
	7.1 Driver directory structure
	7.2 Writing driver code
	7.3 Selecting a driver ID
	7.4 Driver CMakeLists.txt file
	7.5 Modifying the board configuration file
	7.6 Modifying the SDK configuration file
	7.7 Build the custom firmware
	7.8 Altitude example

	8 Integrating a library and applying it to the custom sensor driver
	8.1 Library directory structure
	8.2 Implementing a sensor driver that uses the library
	8.3 Modifying the board configuration file
	8.4 Modifying the SDK configuration file
	8.5 Build the custom firmware

	9 Glossary
	9.1 Virtual Sensor
	9.2 Driver ID
	9.3 Sensor ID

	10 Legal disclaimer
	11 Document history

