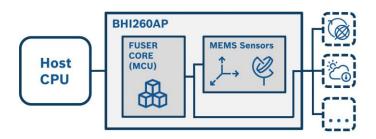


BHI260AP Self-learning AI smart sensor with integrated IMU

GENERAL DESCRIPTION

BHI260AP is a smart sensor that includes a wide variety of software functionalities, a 32-bit customer programmable microcontroller, and a 6-axis IMU all in one package.

The BHI260AP provides an ideal all-in-one solution for alwayson sensor applications such as fitness tracking, navigation, machine learning analytics and orientation estimation.


BHI260AP supports the following platforms and solutions:

- ► Self-learning AI software platform for fitness tracking
- Swim analytics
- Pedestrian dead reckoning
- Relative and absolute orientation

In combination with these functions, the BHI260AP becomes a versatile and ideal solution when it comes to always-on sensor processing at ultra-low power consumption.

OVERVIEW FEATURES

Hardware features

CPU Core:

- ARC EM4 CPU with ARCv2 16/32 bit instruction set (up to 3.6 CoreMark/MHz)
- ► Floating Point Unit (FPU) / Memory Protection Unit (MPU)
- 4-channel micro DMA controller / 2-way associative cache controller

Integrated sensor (6-DoF IMU):

- 16-bit 3-axis accelerometer
- 16-bit 3-axis gyroscope

BHI260AP TARGET APPLICATIONS

- Wrist wearables such as smartwatches, fitness bands and smart hybrid watches
- Head mounted devices such as headsets, truly wireless in-ear devices and smart sunglasses
- Smartphones and other mobile communication devices
- AR/VR/MR headset and controller devices

Software features

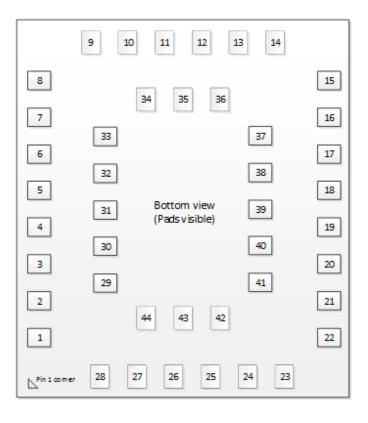
- Self-learning AI software for fitness tracking: Enables on-device learning and automatic tracking of a wide variety of fitness movements, including options for ondevice individual-specific personalization of movements and support for increasing number of activities without the need to modify the original software.
- ► Swim analytics:

Dedicated software for wrist wearables by generating useful information on users' swimming activities, such as length count, style of swimming and stroke counts.

Pedestrian dead reckoning:

This software helps reducing the power consumption of wearable devices by enabling the duty cycling of powerconsuming GNSS components, as well as improving the accuracy of outdoor positioning with pedestrian dead reckoning.

Relative and absolute orientation:


This software estimates relative and absolute orientation of the device, including outputs such as rotation vector, game rotation vector, linear acceleration and gravity.

PIN CONFIGURATION

Pin c	onfiguration	
Pin	Name	Description
1	M3SDA	M3 I2C SDA
2	M3SCL	M3 I2C SCL
3	HOSTBOOT	Boot select
4	QSPI_D0	External Flash Data 0
5	QSPI_CLK	External Flash Clock
6	VREG	Voltage regulator output
7	VDDIO	Digital IO and Fuser Supply
8	QSPI_D3	External Flash Data 3
9	RESETN	Reset input, active low
10	HIRQ	Host Interrupt Output
11	HSDX	Host Interface SPI MOSI, I2C SDA
12	VDDIO	Digital IO and Fuser Supply
13	M2SCX	M2: SPI SCK / I2C SCL
14	QSPI_CSN	External Flash Chip Select
15	QSPI_D1	External Flash Data 1
16	MCSB3	SPI Chip Select 3
17	GNDIO	Digital IO and Fuser Ground
18	MCSB2	SPI Chip Select 2
19	MCSB4	SPI Chip Select 4
20	QSPI_D2	External Flash Data 2
21	OCSB	OIS Chip Select Input
22	ASCX	OIS Clock / Aux I2C SCL
23	JTAG_CLK	Fuser Debug Clock
24	JTAG_DIO	Fuser Debug Data
25	GND	Analog Sensor Ground
26	GND	Analog Sensor Ground
27	GND	Analog Sensor Ground
28	VDD	Analog Sensor Supply
29	M1SCX	M1: SPI SCK / I2C SCL
30	ASDX	OIS MOSI / Aux I2C SDA
31	RESV3	Reserved
32	HSDO	Host Interface SPI MISO / I2C address select
33	HSCX	Host Interface SPI SCK / I2C SCL
34	HCSB	Host Interface SPI CSN / Protocol select
35	M2SDX	M2: SPI MOSI / I2C SDA
36	GNDIO	Digital IO and Fuser Ground
37	M2SDI	M2: SPI MISO / I2C unused
38	MCSB1	SPI Chip Select 1
39	OSDO	OIS MISO
40	RESV2	Reserved
41	RESV1	Reserved
42	VDDIO	Digital IO and Fuser Supply
43	M1SDI	M1: SPI MISO
44	M1SDX	M1: SPI MOSI / I2C SDA

TECHNICAL SPECIFICATIONS

BHI260AP technical data			
Operating voltage	1.8 V		
CPU current consumption			
 Self-learning AI function (25 Hz) 	249 µA		
- Self-learning AI function (50 Hz)	386 µA		
 Standby current 	8 μΑ		
Performance			
 Self-learning AI software 	< 30 secs		
New activity learning time /			
Personalization time			
 Typical recognition rate (F1 score) 	0.95~1.0		
personalized to individuals			

Headquarters

Bosch Sensortec GmbH

Gerhard-Kindler-Strasse 9 72770 Reutlingen · Germany Telephone +49 7121 3535 900 Fax +49 7121 3535 909

www.bosch-sensortec.com