Application Board 3.0 User Guide
Bosch Sensortec’s Sensor Prototyping Platform

Application Board 3.0 User Guide

Data and descriptions in this document are subject to change without notice. Product photos and pictures are for illustration purposes only and may differ from the real product appearance.
Table of Contents

1 About this document ......................................................................................................................... 5
   1.1 Definition of special notices ........................................................................................................ 5
   1.2 Definition of general notices ....................................................................................................... 5

2 Safety and environment ....................................................................................................................... 6
   2.1 Radio frequency radiation exposure and further information ...................................................... 6
   2.2 Disposal ......................................................................................................................................... 6

3 Introduction and intended use ............................................................................................................. 7
   3.1 Intended use .................................................................................................................................. 7
   3.2 Scope of delivery ............................................................................................................................ 7

4 Application Board 3.0 ......................................................................................................................... 8
   4.1 Overview ...................................................................................................................................... 8
   4.2 Dimensions ................................................................................................................................. 8
   4.3 Device specification ..................................................................................................................... 9
   4.4 Operating conditions ................................................................................................................... 9
   4.5 Block Diagram ............................................................................................................................ 9
   4.6 Module descriptions ..................................................................................................................... 10
      4.6.1 Main switch .......................................................................................................................... 10
      4.6.2 Programmable push buttons ............................................................................................... 10
      4.6.3 Debugger connector ............................................................................................................. 10
      4.6.4 Shuttle Board 3.0 connector ................................................................................................. 10
      4.6.5 Temperature sensor .............................................................................................................. 11
      4.6.6 Microcontroller .................................................................................................................... 11
      4.6.7 External flash ........................................................................................................................ 11
      4.6.8 Status LEDs ........................................................................................................................ 11
      4.6.9 Power Good and Charging LEDs ......................................................................................... 11
      4.6.10 Li-Ion battery connector .................................................................................................... 11
   4.7 Pin descriptions ........................................................................................................................... 11

5 Shuttle Board 3.0 ............................................................................................................................... 13
   5.1 Dimensions .................................................................................................................................. 13
   5.2 Pin descriptions ............................................................................................................................ 14

6 Software description .......................................................................................................................... 15
6.1 Overview

7 Getting started

7.1 Setup overview

7.2 Connecting a Shuttle Board 3.0 board

7.3 Connecting to the Application Board 3.0 using USB

7.4 Powering on the Application Board 3.0

7.5 Removing the Shuttle Board 3.0

8 Maintenance

9 Further Product Related Information

10 Regulatory and legal information about the Application Board 3.0

10.1 European Union notices

10.2 USA: FCC notices

10.3 Canada: ISED license exemption

10.4 Bluetooth®

10.5 Disposal

10.6 Restrictions of use

11 Document history and modification
List of figures

Figure 1 Application Board 3.0 Overview ................................................................. 8
Figure 2 Application Board 3.0 dimensions .............................................................. 8
Figure 3 Block Diagram ............................................................................................... 9
Figure 4 Debugger connector....................................................................................... 10
Figure 5 Shuttle Board 3.0 dimensions ...................................................................... 13
Figure 6 Application Board 3.0 setup ........................................................................ 13
Figure 7 Aligning the pins of the Shuttle Board 3.0 board ......................................... 16
Figure 8 Connecting the Shuttle Board 3.0 .............................................................. 16
Figure 9 Connecting the USB cable .......................................................................... 17
Figure 10 Switching ON the Application Board 3.0 ................................................ 18
Figure 11 Removing the Shuttle Board 3.0 ............................................................... 18

List of tables

Table 1 Shuttle pin description .................................................................................... 10
Table 2 Application Board 3.0 pin description .......................................................... 11
Table 3 Shuttle Board 3.0 pin description ................................................................ 14

Abbreviations

ESD : Electrostatic Discharge
FCC : United States of America Federal Communications Commission
USB 2.0 : Universal Serial Bus 2.0
LED : Light Emitting Diode
Li-ion : Lithium-Ion
KB : Kilobyte
MB : Megabyte
Gb : Gigabit
BLE : Bluetooth Low Energy
MTP : Media Transfer Protocol
RGB LED : Red Green Blue Light Emitting Diode
1 About this document

This document describes the operating procedures of the Application Board 3.0 and additional details about the board itself.

To ensure that the Application Board 3.0 is working correctly, follow these instructions carefully before using it.

1.1 Definition of special notices

**Warning**: Indicates a hazard that could lead to minor or moderate injuries. Always follow these instructions.

**Note**: Points of emphasis and reminders of operational peculiarities for the device that could affect performance. Always follow these instructions.

1.2 Definition of general notices

**INFO**: General information and instructions that must be followed

**TIP**: Practical advice
2 Safety and environment

Electrostatic Discharge Caution: ESD (electrostatic discharge) sensitive device. Improper handling may damage the Application Board 3.0 resulting in total or intermittent failures. Use the Application Board 3.0 only in an ESD protected environment and follow ESD-prevention procedures. To prevent ESD damage use an ESD wrist or ankle strap connected to an unpainted metal surface.

2.1 Radio frequency radiation exposure and further information

The radiated output power of the device is far below the FCC radio frequency exposure limits. Nevertheless, the device should be used in such a manner that the potential for human contact during normal operation is minimized.

2.2 Disposal

Disposing of this product correctly will help save valuable resources and prevent any potential negative effects on human health and the environment, which could otherwise arise from inappropriate waste handling. Please contact your local authority for further details of your nearest designated collection point. Penalties may be applicable for incorrect disposal of this waste, in accordance with your national legislation.
3 Introduction and intended use

The Application Board 3.0 is a versatile and sensor independent development platform, enabling a fast and easy experience with Bosch Sensortec's sensors. A wide variety of Bosch Sensortec's sensors can be connected to the platform as Shuttle Board 3.0s. The combination of the Application Board 3.0 and Shuttle Board 3.0 can be used to evaluate the sensors and make prototypes to test use-cases.

3.1 Intended use

The Application Board 3.0 operates according to the information provided in this document. Validation and testing of any use or operation, which requires specific requirements and standards, which are not already explicitly mentioned in this document, is under the responsibility of the user.

Warning: For professional use only. The Application Board 3.0 shall be used by trained personnel only. Improper operation or handling may cause damage to the user or the device itself.

3.2 Scope of delivery

- Application Board 3.0
- Supporting documentation material (User Guide)

Note: Shuttle Board 3.0s are sold separately
4 Application Board 3.0

4.1 Overview

![Application Board 3.0 Overview](image)

Figure 1: Application Board 3.0 Overview

4.2 Dimensions

![Application Board 3.0 dimensions](image)

Figure 2: Application Board 3.0 dimensions
4.3 Device specification

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Nominal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Length 37 mm x Width 47 mm x Height 7 mm</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>5V DC USB, 3.7V Li-ion Battery</td>
</tr>
<tr>
<td>Memory capacity (user data memory)</td>
<td>256 KB RAM, 1MB internal flash, 2Gb external flash</td>
</tr>
<tr>
<td>Communication</td>
<td>BLE 5.0 / USB 2.0</td>
</tr>
<tr>
<td>Bluetooth Low energy frequency band</td>
<td>2.4GHz, 40 channels</td>
</tr>
<tr>
<td>Typical conducted output power</td>
<td>+0 dBm</td>
</tr>
<tr>
<td>Radiated output power (EIRP)</td>
<td>+2 dBm</td>
</tr>
</tbody>
</table>

4.4 Operating conditions

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>25 degree Celsius</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>25 degree Celsius</td>
</tr>
</tbody>
</table>

4.5 Block Diagram

The following shows a simplified block diagram of the Application Board 3.0.

![Block Diagram](image_url)

Figure 3: Block Diagram
4.6 Module descriptions

4.6.1 Main switch
The switch controls the connection between the power source (battery or USB) and the power regulation domains.

4.6.2 Programmable push buttons
Two programmable push buttons are connected to Ground individually through a 360ohm resistor. It is expected that the internal pull-ups of the microcontroller pins connected to the buttons are enabled to use the button with a falling-edge active-low configuration. The buttons are named BTN-T1 and BTN-T2.

4.6.3 Debugger connector
This connector helps with recovery of a board with a corrupted nRF52840 while loading custom applications or similar. Debugging is possible with the connection of a Serial-Wire-Debug interface connector.

4.6.3.1 Overview
An ARM Cortex-M4 compatible debugger can be connected using the standard ARM Cortex 10-pin, 2 row, 1.27mm pitch connector.

![Debugger connector diagram](image)

Figure 4: Debugger connector

4.6.3.2 Pin description

<table>
<thead>
<tr>
<th>Pin index</th>
<th>Name</th>
<th>Description</th>
<th>Pin index</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vcc/Vref</td>
<td>Set to 1.8V when the main switch is set to ON</td>
<td>2</td>
<td>SWDIO</td>
<td>Data I/O pin</td>
</tr>
<tr>
<td>3</td>
<td>Gnd</td>
<td>Ground</td>
<td>4</td>
<td>SWDCLK</td>
<td>Clock pin</td>
</tr>
<tr>
<td>5</td>
<td>Gnd</td>
<td>Ground</td>
<td>6</td>
<td>SWO</td>
<td>Trace output pin</td>
</tr>
<tr>
<td>7</td>
<td>Key</td>
<td>Not connected</td>
<td>8</td>
<td>NC</td>
<td>Not connected</td>
</tr>
<tr>
<td>9</td>
<td>Gnd Detect</td>
<td>Ground</td>
<td>10</td>
<td>nRESET</td>
<td>Active low hardware Reset</td>
</tr>
</tbody>
</table>

4.6.4 Shuttle Board 3.0 connector
The Shuttle Board 3.0 connector allows for the connection of a Shuttle Board 3.0 to be able to prototype one or more sensors (depending on the Shuttle Board 3.0). Details of the Shuttle Board 3.0 connector can be found under 5.
4.6.5 Temperature sensor
A digital temperature sensor, the Texas Instruments TMP112 is used to be able to measure the temperature of the board. The sensor can be accessed with the I2C-TEMP bus. Details on how to operate the sensor can be found in the datasheet.

4.6.6 Microcontroller
The Application Board 3.0 uses the uBlox NINA-B302 Bluetooth low energy module based on the nRF52840 chipset from Nordic Semiconductor. The nRF52840 among other features supports USB2.0 and Bluetooth Low Energy 5.0. Details about the module and the chipset can be found in the NINA-B302 datasheet and nRF52840 product specification respectively.

4.6.7 External flash
A Winbond W25M02GW 2Gbit NAND Flash is connected to the Microcontroller using SPI. The external flash is used primarily for storing files, particularly sensor data log files. The files can be accessed from a host by switching the device to the pre-loaded MTP firmware mode and connecting via USB.

4.6.8 Status LEDs
The microcontroller controls the RGB LED. Details on the LED is controlled is found in Table 2 Application Board 3.0 pin description under the LED-CTRL bus.

4.6.9 Power Good and Charging LEDs
The microcontroller does not control these LEDs, however they indicate the status of the board. The Power Good or PGOOD for short indicates that the board is powered over USB. The Charge LED indicates the charge status connected Li-ion battery. If a battery is not present or if the charging is complete, the LED is turned off.

4.6.10 Li-Ion battery connector
The Li-ion battery connector allows for the connection of a Lithium Ion or Lithium Polymer battery. Do not connect any other type of batteries as this could damage the circuitry of the board and lead to an unexpected behavior, and possibly heating or a fire.

4.7 Pin descriptions

<table>
<thead>
<tr>
<th>Bus name</th>
<th>Pin name</th>
<th>NINA-B302 pin</th>
<th>nRF52840 pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTTLE-GPIO</td>
<td>GPIO0</td>
<td>GPIO_2</td>
<td>P0.14</td>
<td>Shuttle pin 4</td>
</tr>
<tr>
<td></td>
<td>GPIO1</td>
<td>GPIO_1</td>
<td>P0.13</td>
<td>Shuttle pin 5</td>
</tr>
<tr>
<td></td>
<td>GPIO2/INT1</td>
<td>GPIO_35</td>
<td>P1.01</td>
<td>Shuttle pin 6</td>
</tr>
<tr>
<td></td>
<td>GPIO3/INT2</td>
<td>GPIO_34</td>
<td>P1.08</td>
<td>Shuttle pin 7</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>GPIO_5</td>
<td>P0.24</td>
<td>Shuttle pin 8</td>
</tr>
<tr>
<td></td>
<td>SCK/SCL</td>
<td>GPIO_4</td>
<td>P0.16</td>
<td>Shuttle pin 9</td>
</tr>
<tr>
<td></td>
<td>SDO</td>
<td>GPIO_3</td>
<td>P0.15</td>
<td>Shuttle pin 10</td>
</tr>
<tr>
<td></td>
<td>SDI/SDA</td>
<td>GPIO_43</td>
<td>P0.06</td>
<td>Shuttle pin 11</td>
</tr>
<tr>
<td></td>
<td>GPIO4/OCB</td>
<td>GPIO_37</td>
<td>P1.03</td>
<td>Shuttle pin 12</td>
</tr>
<tr>
<td></td>
<td>GPIO5/ASCB</td>
<td>GPIO_36</td>
<td>P1.02</td>
<td>Shuttle pin 13</td>
</tr>
<tr>
<td></td>
<td>GPIO6/OSDO</td>
<td>GPIO_39</td>
<td>P1.11</td>
<td>Shuttle pin 14</td>
</tr>
<tr>
<td></td>
<td>GPIO7/ASD</td>
<td>GPIO_38</td>
<td>P1.10</td>
<td>Shuttle pin 15</td>
</tr>
<tr>
<td></td>
<td>PROM-RW</td>
<td>GPIO_27</td>
<td>P0.05</td>
<td>Shuttle pin 16, 470ohm pull-up resistor</td>
</tr>
<tr>
<td>Module</td>
<td>Pin</td>
<td>Port</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------</td>
<td>------</td>
<td>--------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>SPI-FLASH</td>
<td>SPI-FLASH-MISO</td>
<td>GPIO_50</td>
<td>P.0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPI-FLASH-MOSI</td>
<td>GPIO_51</td>
<td>P.0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPI-FLASH-SCK</td>
<td>GPIO_52</td>
<td>P.0.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPI-FLASH-CS</td>
<td>GPIO_47</td>
<td>P.0.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPI-FLASH-HOLD</td>
<td>GPIO_49</td>
<td>P.0.22</td>
<td></td>
</tr>
<tr>
<td>I2C-TEMP</td>
<td>I2C-TEMP-SDA</td>
<td>GPIO_23</td>
<td>P.0.29</td>
<td>4.7kohm pull-up</td>
</tr>
<tr>
<td></td>
<td>I2C-TEMP-SCL</td>
<td>GPIO_42</td>
<td>P.0.26</td>
<td></td>
</tr>
<tr>
<td>BTN-CTRL</td>
<td>BTN-T1</td>
<td>GPIO_33</td>
<td>P.1.09</td>
<td>Active low. When activated, connected to ground through a 360ohm resistor</td>
</tr>
<tr>
<td></td>
<td>BTN-T2</td>
<td>GPIO_7</td>
<td>P.0.25</td>
<td>Active low. When activated, connected to ground through a 360ohm resistor</td>
</tr>
<tr>
<td>LED-CTRL</td>
<td>LED-RED</td>
<td>GPIO_45</td>
<td>P.0.07</td>
<td>Active low. Connected to 2.8V through a 100ohm resistor</td>
</tr>
<tr>
<td></td>
<td>LED-BLUE</td>
<td>GPIO_46</td>
<td>P.0.12</td>
<td>Active low. Connected to 2.8V through a 33ohm resistor</td>
</tr>
<tr>
<td></td>
<td>LED-GREEN</td>
<td>GPIO_32</td>
<td>P.0.11</td>
<td>Active low. Connected to 2.8V through a 10ohm resistor</td>
</tr>
<tr>
<td>PWR-CTRL</td>
<td>VDD-SEL</td>
<td>GPIO_44</td>
<td>P.0.27</td>
<td>When low, 1.8V is routed to Vdd and 2.8V when high</td>
</tr>
<tr>
<td></td>
<td>VDD-EN</td>
<td>GPIO_16</td>
<td>P.0.03</td>
<td>Routes selected Vdd voltage to the Shuttle’s Vdd pin when high and routes Ground when low</td>
</tr>
<tr>
<td></td>
<td>VDDIO-EN</td>
<td>GPIO_17</td>
<td>P.0.28</td>
<td>Routes 1.8V to the Shuttle’s VddIO pin when high and routes Ground when low</td>
</tr>
<tr>
<td>BAT-MEAS</td>
<td>VBAT-MON-EN</td>
<td>GPIO_18</td>
<td>P.0.02</td>
<td>Active low. When activated, connects the Li-ion anode to the voltage divider</td>
</tr>
<tr>
<td></td>
<td>VBAT-MON</td>
<td>GPIO_20</td>
<td>P.0.31</td>
<td>Output of the voltage divider. 3V is read as 1.125V and 4.2V as 1.575V. R1 is 300kohm and R2 is 180kohm</td>
</tr>
</tbody>
</table>
5 Shuttle Board 3.0

5.1 Dimensions

The following figure describes the typical dimensions of the Shuttle Board 3.0 for standard shuttles.

![Standard Shuttle Board 3.0 dimensions](image)

Figure 5: Standard Shuttle Board 3.0 dimensions

The following figure describes the typical dimensions of the Shuttle Board 3.0 for multi-sensor shuttles.

![Multi-sensor Shuttle Board 3.0 dimensions](image)

Figure 6: Multi-sensor Shuttle Board 3.0 dimensions
### 5.2 Pin descriptions

Table 3 Shuttle Board 3.0 pin description

<table>
<thead>
<tr>
<th>Shuttle Row 1 pin index</th>
<th>Function</th>
<th>Shuttle Row 2 pin index</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Vdd</td>
<td>Powers the sensor. When enabled by VDD-EN it is either 2.8V or 1.8V depending on VDD-SEL.</td>
<td>(1) CS</td>
<td>Typically used as the Chip Select for the SPI bus.</td>
</tr>
<tr>
<td>(2) VddIO</td>
<td>Provide reference IO voltage to some sensors and a power domain to other. When VDDIO-EN is enabled, the pin is connected to 1.8V.</td>
<td>(2) SCK/SCL</td>
<td>Typically used as the Clock for the SPI or I2C buses.</td>
</tr>
<tr>
<td>(3) Gnd</td>
<td>Ground</td>
<td>(3) SDO</td>
<td>Typically used as the Data-out line of the sensor.</td>
</tr>
<tr>
<td>(4) GPIO0</td>
<td>Assigned depending on Shuttle design.</td>
<td>(4) SDI/SDA</td>
<td>Typically used as the Data-in line of the sensor.</td>
</tr>
<tr>
<td>(5) GPIO1</td>
<td>Assigned depending on Shuttle design.</td>
<td>(5) GPIO4/OCSB</td>
<td>Assigned depending on Shuttle design. Typically reserved as the Chip Select for the Optical Image Stabilization (OIS) interface.</td>
</tr>
<tr>
<td>(6) GPIO2/INT1</td>
<td>Assigned depending on Shuttle design. Typically reserved for Interrupt 1.</td>
<td>(6) GPIO5/ASCx</td>
<td>Assigned depending on Shuttle design. Typically reserved as the Clock for the Optical Image Stabilization (OIS) interface or Auxiliary I2C interface.</td>
</tr>
<tr>
<td>(7) GPIO3/INT2</td>
<td>Assigned depending on Shuttle design. Typically reserved for Interrupt 2.</td>
<td>(7) GPIO6/OSDO</td>
<td>Assigned depending on Shuttle design. Typically reserved as the sensor Data-out for the Optical Image Stabilization (OIS) interface.</td>
</tr>
<tr>
<td>(8) GPIO7/ASDx</td>
<td>Assigned depending on Shuttle design. Typically reserved as the Data-in for the Optical Image Stabilization (OIS) interface or Data for the Auxiliary I2C interface.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) PROM-RW</td>
<td>This pin is used to connect to the 1-Wire EEPROM to identify the Shuttle Board 3.0 connected.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Software description

6.1 Overview

Brief description of the memory layout for the Application Board 3.0

**Nordic Semiconductor’s SoftDevice S140**

- Feature-rich Bluetooth Low Energy protocol stack
- **160kB** reserved space
- Key features
  - Bluetooth 5.0.

**USB MTP Firmware**

- Media Transfer Protocol over USB enables the transfer of files to and from the device removing the need of any additional hardware for data transfer
- **32kB** reserved space

**Default Application / User Application**

- The Default Application enables the use of the board as a USB to SPI/I2C/GPIO bridge with some specialized features for event-based data captures from the sensor.
- A custom User Application using the COINES SDK can be loaded onto the board for custom tests, prototypes or demos.
- **768kB** reserved space

**USB DFU Bootloader**

- The bootloader supports the Device Firmware Upgrade standard with the additional ability for wireless firmware upgrade using Nordic Semiconductor’s DFU over Bluetooth LE.
- **64kB** reserved space

NRF52840’s 1MB memory space
7 Getting started

7.1 Setup overview
It is recommended to use an ESD safe environment to operate the Application Board 3.0 as depicted in the image.

![Application Board 3.0 setup](image)

Figure 7: Application Board 3.0 setup

7.2 Connecting a Shuttle Board 3.0 board
Make sure that the pins are aligned correctly to avoid damaging the connector or bending the pins.

![Aligning the pins of the Shuttle Board 3.0 board](image)

Figure 8: Aligning the pins of the Shuttle Board 3.0 board
Once aligned, press down on the board with both thumbs to fit the Shuttle Board 3.0 onto the Application Board 3.0.

Figure 9: Connecting the Shuttle Board 3.0

7.3 Connecting to the Application Board 3.0 using USB

Before connecting the USB cable, ensure that board is switched off.

Figure 10: Connecting the USB cable
7.4 Powering on the Application Board 3.0

To power on the board slide the main switch into the ON position.

![Image](image1.png)

Figure 11: Switching ON the Application

Removing the Shuttle Board 3.0

Tug the Shuttle Board 3.0 back and forth to remove the Application Board 3.0. Avoid twisting and turning as this may dislodge the connector from the Application Board 3.0.

![Image](image2.png)

Gently tug on the Shuttle Board 3.0 to remove it without bending the pins

Figure 12: Removing the Shuttle Board 3.0
8 Maintenance

**Warning:** Damage to materials can cause risk of fire!
Liquid entering the device can cause short circuits and damage the device. This could cause fire, data loss and incorrect measurements.
9 Further Product Related Information

Please find all product related documents and user guides on our website: https://www.bosch-sensortec.com/
10 Regulatory and legal information about the Application Board 3.0

10.1 European Union notices

European Union notices Radio Equipment Directive
Hereby, Bosch Sensortec GmbH declares that the radio equipment type “Application Board 3.0” is in compliance with Directive 2014/53/EU (Radio Equipment Directive). The full text of the EU declaration of conformity is available at the Bosch Sensortec internet address.

RoHS

Name and content of hazardous substances in products

<table>
<thead>
<tr>
<th>Component name</th>
<th>Lead (Pb)</th>
<th>Mercury (Hg)</th>
<th>Cadmium (Cd)</th>
<th>Hexavalent chromium (Cr(VI))</th>
<th>Polybrominated biphenyls (PBB)</th>
<th>Polybrominated diphenyl ethers (PBDE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

This table was developed according to the provisions of SJ/T 11364.

O: The content of such hazardous substance in all homogeneous materials of such component is below the limit required by GB/T 26572.

X: The content of such hazardous substance in a certain homogeneous material of such component is beyond the limit required by GB/T 26572. No mature alternative solution in the industry, complying with EU RoHS.

* The use conditions of products environment-friendly use period are specified in the product manual.

The certification for the European Union only applies to Application Board 3.0 devices with CE printed on the housing. The user shall verify before using the Application Board 3.0 in the European Union.
10.2 USA: FCC notices

FCC has issued an EQUIPMENT AUTHORIZATION to Bosch Sensortec GmbH for Application Board 3.0 according to FCC rule parts 15 C with the FCC ID: 2AO4I-APP30.

Note: Changes or modifications not expressly approved by Bosch Sensortec GmbH could void the FCC certificate and therefore user’s authority to operate the equipment."

The radiated output power of the device is far below the FCC radio frequency exposure limits. Nevertheless, the device shall be used in such a manner that the potential for human contact during normal operation is minimized.

The device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

1) The device may not cause harmful interferences, and
2) This device must accept any interferences received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Use of the Application Board 3.0 is subject to validation and observation of local legal regulation by the customer. For information on other certifications – which gradually may be issued over time - please, contact our Application Board 3.0 support at contact@bosch-sensortec.com.
10.3 Canada: ISED license exemption

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada’s licence-exempt RSS(s). Operation is subject to the following two conditions:
(1) This device may not cause interference; and
(2) This device must accept any interference, including interference that may cause undesired operation of the device.

Additional information:
CAN ICES-003(B)/NMB-003(B)
IC:26413-APP30

10.4 Bluetooth

The Application Board 3.0 supports Bluetooth 5.0.

10.5 Disposal

The unit, accessories and packaging should be sorted for environmentally-friendly recycling. Do not dispose of the device into household and industrial waste!

According to the European Guideline 2012/19/EU, electric and electronic devices that are no longer usable must be collected separately and disposed of in an environmentally correct manner.

10.6 Restrictions of use

The Application Board 3.0 application board is developed for professional use only. Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters of this product data sheet. They are not fit for use in life-sustaining or safety-critical systems. Safety-critical systems are those for which a malfunction is expected to lead to bodily harm, death or severe property damage. In addition, they shall not be used directly or indirectly for military purposes (including but not limited to nuclear, chemical or biological proliferation of weapons or development of missile technology), nuclear power, deep sea or space applications (including but not limited to satellite technology).

Bosch Sensortec products are released on the basis of the legal and normative requirements relevant to the Bosch Sensortec product for use in the following geographical target market: BE, BG, DK, DE, EE, FI, FR, GR, IE, IT, HR, LV, LT, LU, MT, NL, AT, PL, PT, RO, SE, SK, SI, ES, CZ, HU, CY, US, CN, JP, KR, TW. If you need further information or have further requirements, please contact your local sales contact.

The use of Bosch Sensortec products at the user’s own risk and responsibility.

Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding functionality, performance or error has been made.
## 11 Document history and modification

<table>
<thead>
<tr>
<th>Rev. No</th>
<th>Chapter</th>
<th>Description of modification/changes</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>-</td>
<td>Initial release</td>
<td>October 2020</td>
</tr>
<tr>
<td>1.0</td>
<td>-</td>
<td>Disclaimer update</td>
<td>November 2020</td>
</tr>
<tr>
<td>1.0</td>
<td>6</td>
<td>Added Software description</td>
<td>December 2020</td>
</tr>
</tbody>
</table>