注
本ドキュメントに記載されている内容は、予告なく変更されることがあります。製品 製品の写真や絵は説明のためのもので、実際の製品の外観とは異なる場合があります。
目次

1 本ドキュメントについて........................................................................................................5
  1.1 特記事項の定義..................................................................................................................5
  1.2 一般通知の定義................................................................................................................5

2 安全と環境 ..............................................................................................................................6
  2.1 放射性物質の暴露と詳細情報..........................................................................................6
  2.2 廃棄について......................................................................................................................6

3 導入と使用目的 ......................................................................................................................7
  3.1 使用目的 ..........................................................................................................................7
  3.2 配信範囲 ..........................................................................................................................7

4 Application Board 3.0 .........................................................................................................8
  4.1 概要 ..................................................................................................................................8
  4.2 外形寸法 ..........................................................................................................................8
  4.3 デバイスの仕様 ................................................................................................................9
  4.4 動作条件 ..........................................................................................................................9
  4.5 ブロック図 .......................................................................................................................9
  4.6 モジュールの説明 .............................................................................................................10
    4.6.1 メインスイッチ ..........................................................................................................10
    4.6.2 プログラム可能な押しボタン ..................................................................................10
    4.6.3 デバッグ用コネクタ ..................................................................................................10
    4.6.4 Shuttle Board 3.0コネクタ .........................................................................................10
    4.6.5 温度センサー ............................................................................................................11
    4.6.6 マイクロコントローラー .........................................................................................11
    4.6.7 外付けフラッシュ ......................................................................................................11
    4.6.8 ステータスLED .......................................................................................................11
    4.6.9 パワーグッドおよび充電LED ....................................................................................11
    4.6.10 Li-ionバッテリーコネクター .....................................................................................11
  4.7 ピン説明 ........................................................................................................................11

5 Shuttle Board 3.0 ................................................................................................................13
  5.1 外形寸法 ........................................................................................................................13
  5.2 ピン説明 ........................................................................................................................14

6 ソフトウェア説明 ................................................................................................................15
6.1 概要 .................................................................................................................. 15
7  はじめに ............................................................................................................... 16
  7.1 セットアップの概要 ....................................................................................... 16
  7.2 Shuttle Board 3.0ボードの接続 ................................................................. 16
  7.3 Application Board 3.0へのUSBによる接続 .............................................. 17
  7.4 Application Board 3.0の電源投入 ............................................................... 18
  7.5 Shuttle Board 3.0の取り外し ..................................................................... 18
8 メンテナンス .................................................................................................... 19
9  その他の製品関連情報 .................................................................................... 20
10 Application Board 3.0に関する規制および法的情報 .................................. 21
  10.1 欧州連合通知 ............................................................................................. 21
  10.2 米国：FCC通知 .......................................................................................... 21
  10.3 カナダ：ISEDライセンス免除 ................................................................. 22
  10.4 Bluetooth .................................................................................................... 22
  10.5 廃棄について ............................................................................................... 22
  10.6 使用上の制限 ............................................................................................. 22
11 ドキュメントの履歴と変更 ............................................................................. 23
1 本ドキュメントについて

このドキュメントでは、Application Board 3.0の操作方法とボード自体の詳細について説明しています。
正常に動作するように、Application Board 3.0を使用する前に以下の注意事項に従ってください。

1.1 特記事項の定義

警告：軽傷または中程度の怪我につながら可能性のある危険な状態を示します。必ずこれらの指示に従ってください。

注：性能に影響を与える可能性のあるデバイスの操作上の特殊性についての強調事項および注意事項を示しています。
必ずこれらの指示に従ってください。

1.2 一般通知の定義

情報：従わなければならない一般的な情報や指示

ヒント：実用的なアドバイス
2 安全と環境

静電放電の注意：ESD (静電気) に敏感なデバイスです。不適切な取り扱いをすると、Application Board 3.0 が損傷し、全体的または断続的な障害が発生する可能性があります。Application Board 3.0 は、ESD から保護された環境でのみ使用し、ESD 防止の手順に従ってください。ESD による損傷を防ぐには、ESD リストストラップまたはアンクルストラップを塗装されていない金属面に接続してください。

2.1 放射性物質の暴露と詳細情報
本デバイスの等価等方放射電力は、FCC の無線周波数暴露限度をはるかに下回っています。しかし、本デバイスは、通常の操作時に人と接触する可能性を最小限に抑えるような方法で使用する必要があります。

2.2 廃棄について
本製品を正しく廃棄することで、貴重な資源を節約し、不適切な廃棄物処理に起因する人の健康や環境への悪影響を防ぐことができます。

最寄の指定回収場所の詳細については、お住まいの地域の自治体にお問い合わせください。

本製品を正しく廃棄しないと、国の法律に基づいて罰則が適用される場合があります。
3 導入と使用目的

Application Board 3.0 は、多機能でセンサに依存しない開発プラットフォームであり、Bosch Sensortec のセンサを迅速かつ容易に使用することができます。Bosch Sensortec のさまざまなセンサーは、Shuttle Board 3.0s としてプラットフォームに接続することができます。Application Board 3.0 と Shuttle Board 3.0 の組み合わせは、センサーの評価やユースケースをテストするためのプロトタイプの作成に使用できます。

3.1 使用目的

Application Board 3.0 は、このドキュメントに記載された情報に従って動作します。この文書に明示的に記載されていない特定の要件や基準を必要とする使用や操作の検証や検査は、ユーザーの責任の下で行われます。

警告：業務用としてのみ使用してください。Application Board 3.0 は、訓練を受けた担当者のみが使用するものとします。不適切な操作や取り扱いは、ユーザーおよびデバイス自体にダメージを与える可能性があります。

3.2 配信範囲

► Application Board 3.0

► サポートドキュメント資料（ユーザーガイド）

注：Shuttle Board 3.0s は別売りです
4 Application Board 3.0

4.1 概要

図1: Application Board 3.0の概要

1. Micro USB 2.0コネクタ
2. メインスイッチ
3. プログラム可能な押しボタン
4. ステータスLED
5. デバッグ用コネクタ
6. Shuttle Board 3.0コネクタ
7. 溫度センサー
8. マイコンモジュール
9. 外部フラッシュ
10. 電源良好および充電中LED
11. Li-Ionバッテリーコネクタ

4.2 外形寸法

図2: Application Board 3.0の寸法
4.3 デバイスの仕様

<table>
<thead>
<tr>
<th>属性</th>
<th>公称値</th>
</tr>
</thead>
<tbody>
<tr>
<td>外形寸法</td>
<td>長さ37mm x 幅47mm x 高さ7mm</td>
</tr>
<tr>
<td>電源電圧</td>
<td>5V DC USB、3.7Vリチウムイオンバッテリー</td>
</tr>
<tr>
<td>メモリ容量（ユーザーデータメモリ）</td>
<td>256KB RAM、1MB内蔵フラッシュ、2Gb外部フラッシュ</td>
</tr>
<tr>
<td>通信方式</td>
<td>BLE 5.0 / USB 2.0</td>
</tr>
<tr>
<td>Bluetooth Low Energy周波数帯域</td>
<td>2.4GHz、40チャンネル</td>
</tr>
<tr>
<td>標準伝導出力</td>
<td>+0dBm</td>
</tr>
<tr>
<td>等価等方放射電力(EIRP)</td>
<td>+2 dBm</td>
</tr>
</tbody>
</table>

4.4 動作条件

<table>
<thead>
<tr>
<th>属性</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>動作温度範囲</td>
<td>摂氏25度</td>
</tr>
<tr>
<td>保存温度範囲</td>
<td>摂氏25度</td>
</tr>
</tbody>
</table>

4.5 ブロック図

以下は、Application Board 3.0の概略を示したブロック図です
4.6 モジュールの説明

4.6.1 メインスイッチ
電源（バッテリーまたはUSB）と電力調整領域との接続を制御します。

4.6.2 プログラム可能な押しボタン
2つのプログラム可能な押しボタンは、360Ωの抵抗を介して個別にグランドに接続されています。ボタンに接続されたマイクロコントローラーのピンの内部プルアップを有効にして、ボタンを立下りエッジのアクティブロー構成で使用することが期待されている。ボタンの名称は「BTN-T1」と「BTN-T2」です。

4.6.3 デバッガ用コネクタ
このコネクタは、nRF52840が破損したボードで、カスタムアプリケーションなどをロードする際のリカバリーに役立ちます。Serial-Wire-Debugインターフェースコネクタを接続することで、デバッグが可能です。

4.6.3.1 概要

図4：デバッガ用コネクタ

4.6.3.2 端子の説明

表1 シャトルピン説明

<table>
<thead>
<tr>
<th>ピンインデックス</th>
<th>名称</th>
<th>説明</th>
<th>ピンインデックス</th>
<th>名称</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vcc/Vref</td>
<td>メインスイッチをオンにすると1.8Vになります</td>
<td>2</td>
<td>SWDIO</td>
<td>データ入出力ピン</td>
</tr>
<tr>
<td>3</td>
<td>Gnd</td>
<td>グランド</td>
<td>4</td>
<td>SWDCLK</td>
<td>クロックピン</td>
</tr>
<tr>
<td>5</td>
<td>Gnd</td>
<td>グランド</td>
<td>6</td>
<td>SWO</td>
<td>トレース出力ピン</td>
</tr>
<tr>
<td>7</td>
<td>キー</td>
<td>接続されていません</td>
<td>8</td>
<td>NC</td>
<td>接続されていない</td>
</tr>
<tr>
<td>9</td>
<td>Gnd検出</td>
<td>グランド</td>
<td>10</td>
<td>nRESET</td>
<td>アクティブローのハードウェアリセット</td>
</tr>
</tbody>
</table>

4.6.4 Shuttle Board 3.0コネクタ
Shuttle Board 3.0コネクタは、1つまたは複数のセンサーを試作できるようにするためのShuttle Board 3.0の接続を可能にします（Shuttle Board 3.0によって異なります）。Shuttle Board 3.0コネクタの詳細については、5.を参照してください。
4.6.5 温度センサー
デジタル温度センサーであるTexas Instruments TMP112は、ボードの温度を測定するために使用されます。このセンサーは、I2C-TEMPバスでアクセスできます。センサーの操作方法の詳細は、datasheet (データシート) に記載されています。

4.6.6 マイクロコントローラー
Application Board 3.0は、Nordic Semiconductor社のnRF52840チップセットをベースにしたuBlox NINA-B302 Bluetooth low energyモジュールを使用しています。nRF52840は、USB 2.0とBluetooth Low Energy 5.0をサポートしています。モジュールとチップセットの詳細は、それぞれNINA-B302のdatasheet (データシート) とnRF52840のproduct specification (製品仕様書) に記載されています。

4.6.7 外付けフラッシュ
Winbond W25M02GW 2Gbit NANDフラッシュは、SPIを用いてマイコンに接続されています。外部フラッシュは、主にファイル（特にセンサーデータのログファイル）を保存するために使用されます。このファイルにホストからアクセスするには、デバイスをあらかじめロードされたMTPファームウェアモードに切り替え、USBで接続します。

4.6.8 ステータスLED
マイクロコントローラーは、RGB LEDを制御します。LEDの制御についての詳細は、表2 Application Board 3.0ビンのLED-CTRLバスのピンの説明に記載されています。

4.6.9 パワーグッドおよび充電LED
マイクロコントローラーはこれらのLEDを制御しませんが、ボードの状態を示します。Power Good (略してPGOOD) は、ボードにUSB経由で電源が供給されていることを示します。充電LEDは、接続されたリチウムイオンバッテリーの充電状態を示します。バッテリーが存在しない場合や、充電が完了した場合は、LEDが消灯します。

4.6.10 Li-Ionバッテリーコネクタ
リチウムイオンバッテリーコネクタには、リチウムイオン電池またはリチウムポリマー電池を接続できます。基板の回路が損傷して予期せぬ動作をしたり、発熱や発火を引き起こしたりする原因になることがありますので、これ以外の電池を接続しないでください。

4.7 ピン説明

<table>
<thead>
<tr>
<th>バス名</th>
<th>端子の名前</th>
<th>NINA-B302ピン</th>
<th>nRF52840ピン</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHUTTLE-GPIO</td>
<td>GPIO0</td>
<td>GPIO_2</td>
<td>P0.14</td>
<td>シャトルピン4</td>
</tr>
<tr>
<td></td>
<td>GPIO1</td>
<td>GPIO_1</td>
<td>P0.13</td>
<td>シャトルピン5</td>
</tr>
<tr>
<td></td>
<td>GPIO2/INT1</td>
<td>GPIO_35</td>
<td>P1.01</td>
<td>シャトルピン6</td>
</tr>
<tr>
<td></td>
<td>GPIO3/INT2</td>
<td>GPIO_34</td>
<td>P1.08</td>
<td>シャトルピン7</td>
</tr>
<tr>
<td></td>
<td>CS</td>
<td>GPIO_5</td>
<td>P0.24</td>
<td>シャトルピン8</td>
</tr>
<tr>
<td></td>
<td>SCK/SCL</td>
<td>GPIO_4</td>
<td>P0.16</td>
<td>シャトルピン9</td>
</tr>
<tr>
<td></td>
<td>SDO</td>
<td>GPIO_3</td>
<td>P0.15</td>
<td>シャトルピン10</td>
</tr>
<tr>
<td></td>
<td>SDI/SDA</td>
<td>GPIO_43</td>
<td>P0.06</td>
<td>シャトルピン11</td>
</tr>
<tr>
<td></td>
<td>GPIO4/OCB</td>
<td>GPIO_37</td>
<td>P1.03</td>
<td>シャトルピン12</td>
</tr>
<tr>
<td></td>
<td>GPIO5/ASCx</td>
<td>GPIO_36</td>
<td>P1.02</td>
<td>シャトルピン13</td>
</tr>
<tr>
<td>ボタン</td>
<td>I2C-TEMP</td>
<td>LED-CTRL</td>
<td>PWR-CTRL</td>
<td>BAT-MEAS</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>GPIO6/OSDO</td>
<td>GPIO_39</td>
<td>P1.11</td>
<td>シャトルピン14</td>
<td></td>
</tr>
<tr>
<td>GPIO7/ASDx</td>
<td>GPIO_38</td>
<td>P1.10</td>
<td>シャトルピン15</td>
<td></td>
</tr>
<tr>
<td>PROM-RW</td>
<td>GPIO_27</td>
<td>P0.05</td>
<td>シャトルピン16、470Ωプルアップ抵抗</td>
<td></td>
</tr>
<tr>
<td>SPI-FLASH- MISO</td>
<td>GPIO_48</td>
<td>P0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI-FLASH- MOSI</td>
<td>GPIO_50</td>
<td>P0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI-FLASH- SCK</td>
<td>GPIO_52</td>
<td>P0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI-FLASH- CS</td>
<td>GPIO_51</td>
<td>P0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI-FLASH- HOLD</td>
<td>GPIO_47</td>
<td>P0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI-FLASH- WP</td>
<td>GPIO_49</td>
<td>P0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2C-TEMP- SDA</td>
<td>GPIO_23</td>
<td>P0.29</td>
<td>4.7kΩ プルアップ</td>
<td></td>
</tr>
<tr>
<td>I2C-TEMP- SCL</td>
<td>GPIO_42</td>
<td>P0.26</td>
<td>4.7kΩ プルアップ</td>
<td></td>
</tr>
<tr>
<td>BTN-CTRL</td>
<td>BTN-T1</td>
<td>GPIO_33</td>
<td>P1.09</td>
<td>アクティブロー。起動時には360Ωの抵抗を介してグランドに接続</td>
</tr>
<tr>
<td>BTN-T2</td>
<td>GPIO_7</td>
<td>P0.25</td>
<td>アクティブロー。起動時には360Ωの抵抗を介してグランドに接続</td>
<td></td>
</tr>
<tr>
<td>LED-CTRL</td>
<td>LED-RED</td>
<td>GPIO_45</td>
<td>P0.07</td>
<td>アクティブロー。2.8Vへの接続は100Ωの抵抗を介しています</td>
</tr>
<tr>
<td>LED-BLUE</td>
<td>GPIO_46</td>
<td>P0.12</td>
<td>アクティブロー。2.8Vへの接続は33Ωの抵抗を介しています</td>
<td></td>
</tr>
<tr>
<td>LED-GREEN</td>
<td>GPIO_32</td>
<td>P0.11</td>
<td>アクティブロー。2.8Vへの接続は10Ωの抵抗で2.8Vに接続</td>
<td></td>
</tr>
<tr>
<td>PWR-CTRL</td>
<td>VDD-SEL</td>
<td>GPIO_44</td>
<td>P0.27</td>
<td>ローの時は1.8VをVddに、ハイの時は2.8VをVddにルーティングします</td>
</tr>
<tr>
<td>VDD-EN</td>
<td>GPIO_16</td>
<td>P0.03</td>
<td>ハイの時は選択したVdd電圧をShuttleのVddピンにルーティングしローの時にはグランドにルーティングします</td>
<td></td>
</tr>
<tr>
<td>VDDIO-EN</td>
<td>GPIO_17</td>
<td>P0.28</td>
<td>ハイの時にはシャトルのVddIOピンに1.8Vをルーティングしローの時にはグランドにルーティングします</td>
<td></td>
</tr>
<tr>
<td>BAT-MEAS</td>
<td>VBAT-MON-EN</td>
<td>GPIO_18</td>
<td>P0.02</td>
<td>アクティブロー。起動時にはLi-ionのアノードを分圧器に接続</td>
</tr>
<tr>
<td>VBAT-MON</td>
<td>GPIO_20</td>
<td>P0.31</td>
<td>分圧器の出力です。3Vは1.125V、4.2Vは1.575Vと読み取れます。R1は300kΩ、R2は180kΩです</td>
<td></td>
</tr>
</tbody>
</table>
5 Shuttle Board 3.0

5.1 外形寸法
次の図は、標準的なシャトルのためのShuttle Board 3.0の典型的な寸法を説明しています。

図5：標準的なShuttle Board 3.0の寸法
次の図は、マルチセンサーシャトル用のShuttle Board 3.0の典型的な寸法を説明しています。

図6：マルチセンサー用Shuttle Board 3.0の寸法
### 5.2 ピン説明

表 3 Shuttle Board 3.0のピンの説明

<table>
<thead>
<tr>
<th>シャトル列1ピンインデックス</th>
<th>機能</th>
<th>シャトル列2ピンインデックス</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Vdd</td>
<td>センサーに電源を供給します。VDD-ENで有効になるとVDD-SELに応じて2.8Vまたは1.8Vになります。</td>
<td>(1) CS</td>
<td>一般的にSPIバスのチップセレクトとして使用されます。</td>
</tr>
<tr>
<td>(2) VddIO</td>
<td>一部のセンサーには基準となるIO電圧を、その他のセンサーには電源ドメインを提供する。VDDIO-ENが有効な場合、このピンは1.8Vに接続されます。</td>
<td>(2) SCK/SCL</td>
<td>一般に、SPIまたはI2Cバスのクロックとして使用される。</td>
</tr>
<tr>
<td>(3) Gnd</td>
<td>グランド端子</td>
<td>(3) SDO</td>
<td>一般に、SPIまたはI2Cバスのクロックとして使用される。</td>
</tr>
<tr>
<td>(4) GPIO0</td>
<td>シャトルの設計に応じて割り当てられます。</td>
<td>(4) SDI/SDA</td>
<td>一般的にセンサーのデータ出力ラインとして使用します。</td>
</tr>
<tr>
<td>(5) GPIO1</td>
<td>シャトルの設計に応じて割り当てられます。</td>
<td>(5) GPIO4/OCSB</td>
<td>シャトルの設計に応じて割り当てられます。一般的には光学式手ぶれ補正（OIS）インターフェースのチップセレクト用に予約されています。</td>
</tr>
<tr>
<td>(6) GPIO2/INT1</td>
<td>シャトルの設計に応じて割り当てられます。通常、割り込み1用に予約されています。</td>
<td>(6) GPIO5/ASCx</td>
<td>シャトルの設計に応じて割り当てられます。一般的には光学式手ぶれ補正（OIS）インターフェースまたは補助I2Cインターフェースのクロック用に予約されています。</td>
</tr>
<tr>
<td>(7) GPIO3/INT2</td>
<td>シャトルの設計に応じて割り当てられます。通常、割り込み2用に予約されています。</td>
<td>(7) GPIO6/OSDO</td>
<td>シャトルの設計に応じて割り当てられます。一般的には光学式手ブレ補正（OIS）のセンサーデータアウト用に予約されています。</td>
</tr>
<tr>
<td>(8) GPIO7/ASDx</td>
<td></td>
<td></td>
<td>シャトルの設計に応じて割り当てられます。一般的には光学式手ブレ補正（OIS）インターフェースまたは補助I2Cインターフェースのデータ用に予約されています。</td>
</tr>
<tr>
<td>(9) PROM-RW</td>
<td>このピンは、1線式EEPROMに接続してShuttle Board 3.0を識別するために使用されます。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 ソフトウェア説明

6.1 概要

Application Board 3.0のメモリレイアウトについての簡単な説明

<table>
<thead>
<tr>
<th>Nordic Semiconductor社のSoftDevice S140</th>
</tr>
</thead>
<tbody>
<tr>
<td>機能豊富なBluetooth Low Energyプロトコルスタック</td>
</tr>
<tr>
<td>160kB の予約領域</td>
</tr>
<tr>
<td>主な機能</td>
</tr>
<tr>
<td>Bluetooth 5.0に対応</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USB MTPファームウェア</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media Transfer Protocol over USBは、データ転送のためのハードウェアを追加することなく、デバイス間のファイル転送を可能にします</td>
</tr>
<tr>
<td>32kB の予約領域</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>デフォルトアプリケーション/ユーザーアプリケーション</th>
</tr>
</thead>
<tbody>
<tr>
<td>デフォルトアプリケーションでは、USBからSPI/I2C/GPIOへのブリッジとしてボードを使用することができ、センサーからのイベントベースのデータキャプチャのためのいくつかの特別な機能を備えています。</td>
</tr>
<tr>
<td>また、COINES SDKを使用したカスタムユーザーアプリケーションをボードにロードして、カスタムテスト、プロトタイブ、デモを行うことができます。</td>
</tr>
<tr>
<td>768kB の予約領域</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USB DFUブートローダ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブートローダは、Nordic Semiconductor社のDFU over Bluetooth LEを使用したワイヤレスファームウェアアップグレードの機能を追加したDevice Firmware Upgrade規格をサポートしています。</td>
</tr>
<tr>
<td>64kB の予約領域</td>
</tr>
</tbody>
</table>
7 はじめに

7.1 セットアップの概要

Application Board 3.0を使用する際には、図のようなESDに対して安全な環境での使用を推奨します。

図7: Application Board 3.0のセットアップ

7.2 Shuttle Board 3.0ボードの接続

コネクタの破損やピンの曲がりを防ぐため、ピンが正しく配置されていることを確認してください。

図8: Shuttle Board 3.0ボードのピンの位置合わせ
整列したら、両手の親指でボードを押し下げて、Shuttle Board 3.0をApplication Board 3.0にはめ込みます。

図9：Shuttle Board 3.0の接続

7.3 Application Board 3.0へのUSBによる接続

USBケーブルを接続する前に、ボードの電源がオフになっていることを確認してください。

図10：USBケーブルの接続
7.4 Application Board 3.0の電源投入

ボードの電源を入れるには、メインスイッチをオンの位置にスライドさせます。

図11: アプリケーションの電源オン

7.5 Shuttle Board 3.0の取り外し

Shuttle Board 3.0を前後に引っ張って、Application Board 3.0を取り外してください。ねじったり回したりすると、Application Board 3.0からコネクタが外れる可能性があるので避けてください。

図12: Shuttle Board 3.0の取り外し
8 メンテナンス

警告：材料を損傷すると、火災の危険性があります！
デバイスに液体が入ると、ショートしてデバイスが損傷する可能性があります。これは、火災、データ損失、および不正な測定を引き起こす可能性があります。
9 その他の製品関連情報

製品に関連するすべてのドキュメントとユーザーガイドは、当社ウェブサイト: https://www.bosch-sensortec.com/
10 Application Board 3.0に関する規制および法的情報

10.1 欧州連合通知

欧州連合通知 無線機器指令

これにより、Bosch Sensortec GmbHは、無線機器タイプ「Application Board 3.0」が指令2014/53/EU（無線機器指令）に準拠していることを宣言します。EU適合宣言の全文は、Bosch Sensortecのインターネットアドレスでご覧いただけます。

RoHS

Application Board 3.0 は、電気・電子機器に含まれる特定有害物質の使用制限に関する指令2011/65/EU（RoHS指令）の要件を満たしています。

欧州連合向けの認証は、箇体にCEと印刷されたApplication Board 3.0デバイスにのみ適用されます。ユーザーは、欧州連合でApplication Board 3.0を使用する前に確認する必要があります。

10.2 米国：FCC通知

FCCはBosch Sensortec GmbHに対し、FCC規則パート15 Cに基づくApplication Board 3.0の機器承認をFCC IDで発行しました：2AO4I-APP30。

注：Bosch Sensortec GmbHが明示的に承認していない変更や修正は、FCC証明書を無効にする可能性があるため、ユーザーの機器操作権限を無効にします。

本デバイスの等価等方放射電力は、FCCの無線周波数暴漏限度をはるかに下回っています。それにもかかわらず、本デバイスは、通常の操作時に人が接触する可能性を最小限に抑えるような方法で使用しなければなりません。

本デバイスは、FCC規則のパート15に準拠しています。操作には以下の2つの条件があります：

1) 本デバイスは有害な干渉を起こしてはなりません。
2) 本デバイスは、望ましくない動作を引き起こす可能性のある干渉を含め、受信したあらゆる干渉に耐性をもつ必要があります。

本機器は、テストの結果、FCC規則のパート15に準拠したクラスBデジタル機器の制限に準拠していることが確認されています。これらの制限は、住宅設備での有害な干渉に対する合理的な保護を提供するように設計されています。本機器は、無線周波数エネルギーを生成、使用、放射する可能性があり、説明書に従って設置、使用しない場合、無線通信に有害な干渉を引き起こす可能性があります。しかし、特定の設置場所で干渉が起こらないことを保証するものではありません。本機がラジオやテレビの受信に有害な干渉を引き起こす場合（これは本機の電源を切ったり入れたりすることで判断できます）、ユーザーは以下の1つまたは複数の方法で干渉を修正するようにしてください：

► 受信アンテナの向きを変えるか、場所を変える。
► 機器と受信機の距離を離す。
► 受信機が接続されている回路とは別の回路のコンセントに機器を接続する。
► 販売店または経験豊富なラジオ/TV技術者に相談する。

Application Board 3.0の使用には、お客様による地域の法的規制の検証および遵守が必要です。将来的に発行される可能性のあるその他の認証については、Application Board 3.0 サポート（contact@bosch-sensortec.com）までお問い合わせください。
10.3 カナダ：ISEDライセンス免除

本デバイスには、カナダのInnovation, Science and Economic Development Canadaのライセンス免除RSSに準拠したライセンス免除のトランスミッター/レシーバーが含まれています。操作には以下の2つの条件があります:

(1) 本デバイスは、干渉を起こしてはなりません。
(2) 本デバイスは、デバイスの望ましくない動作を引き起こす可能性のある干渉を含め、あらゆる干渉に耐性を持つ必要があります。

追加情報:
CAN ICES-003(B)/NMB-003(B)
IC:26413-APP30

10.4 Bluetooth

Application Board 3.0は、Bluetooth 5.0に対応しています。

10.5 廃棄について

本機、付属品、梱包材を環境に配慮したリサイクルのために分別してください。本デバイスを家庭ごみや産業廃棄物として廃棄しないでください！

欧州ガイドライン2012/19/EUによると、使用できなくなった電気・電子機器は個別に回収し、環境に配慮した正しい方法で廃棄しなければならないとされています。

10.6 使用上の制限

Application Board 3.0 Application Boardは、業務用としてのみ開発されています。

Bosch Sensortec製品は、以下の地理的対象市場で使用される Bosch Sensortec製品に関連する法的および規範的要求事項に基づいてリリースされます：BE, BG, DK, DE, EE, FI, FR, GR, IE, IT, HR, LV, LT, LU, MT, NL, AT, PL, PT, RO, SE, SK, SI, ES, CZ, HU, CY, US, CN, JP, KR, TW。さらに詳しい情報が必要な場合ご不明な点やご要望がございましたら、お近くの販売店にお問い合わせください。

Bosch Sensortec製品のご使用は、お客様の責任において行ってください。

応用例とヒント

本書に記載されている使用例やヒント、本書に記載されている代表値、および本デバイスのアプリケーションに関する情報について、Bosch Sensortecは、第三者の知的財産権や著作権を侵害していないことの保証を含め、いかなる種類の保証や責任も負わないものとします。本資料に記載されている情報は、いかなる場合も条件や特性を保証するものではありません。また、知的財産権や著作権の侵害、機能、性能、エラーに関する評価は行っておりません。
## 11 ドキュメントの履歴と変更

<table>
<thead>
<tr>
<th>改訂番号</th>
<th>章</th>
<th>変更内容</th>
<th>改訂/変更</th>
<th>日付</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>-</td>
<td>初期リリース</td>
<td></td>
<td>2020年10月</td>
</tr>
<tr>
<td>1.0</td>
<td>-</td>
<td>免責事項の更新</td>
<td></td>
<td>2020年11月</td>
</tr>
<tr>
<td>1.0</td>
<td>6</td>
<td>ソフトウェアの説明を追加</td>
<td></td>
<td>2020年12月</td>
</tr>
</tbody>
</table>